Answer:
- The total distance traveled is 28 inches.
- The displacement is 2 inches to the east.
Explanation:
Lets put a frame of reference in the problem. Starting the frame of reference at the point with the 0-inch mark, and making the unit vector
pointing in the west direction, the ant start at position

Then, moves to

so, the distance traveled here is



after this, the ant travels to

so, the distance traveled here is



The total distance traveled will be:

The displacement is the final position vector minus the initial position vector:



This is 2 inches to the east.
Answer:
<em><u>The</u></em><em><u> </u></em><em>answer</em><em> </em><em>Is</em><em> </em><em>B.</em><em> </em>
Explanation:
<em><u>The</u></em><em><u> </u></em><em><u>cats</u></em><em><u> </u></em><em><u>acceleration</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>decreased</u></em>
<em><u>by</u></em><em><u> </u></em><em><u>air</u></em><em><u> </u></em><em><u>resistance</u></em><em><u>.</u></em><em><u> </u></em>
<em><u>hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>helps</u></em><em><u> </u></em><em><u>you</u></em><em><u>!</u></em><em><u> </u></em>
<em><u>follow</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>more</u></em>
<em><u>don't</u></em><em><u> </u></em><em><u>worry</u></em><em><u> </u></em><em><u>I'll</u></em><em><u> </u></em><em><u>try</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>best</u></em>
Answer:
option C
Explanation:
given,
energy dissipated by the system to the surrounding = 12 J
Work done on the system = 28 J
change in internal energy of the system
Δ U = Q - W
system losses energy = - 12 J
work done = -28 J
Δ U = Q - W
Δ U = -12 -(-28)
Δ U = 16 J
hence, the correct answer is option C
Yes bc its going from one to another solid-liquid-gas
Net flux through the cylindrical surface is given as

here q = enclosed charge in the surface
so here in order to find the value of q

so now we have

so this is the total flux
now by Gauss's law we can find the electric field




<em>by above expression we can find the electric field at required position</em>