Answer:
a. Springs oscillate with the same frequency
Explanation:
As they both are in the same height at equilibrium, so
weight of ball must be balanced with spring force, that is
k×x=mg
k= stiffness constant of spring
x=distance stretched
g= acceleration due to gravity
so, we can write
k/m=g/x
as the g is a constant and they stretched to same distance x so the g/x term becomes constant and

and k/m is same for both the springs so they will oscillate at the same frequency.
hence option a is correct.
Answer:

Explanation:
Given:
- initial gauge pressure in the container,

- atmospheric pressure at sea level,

- initial volume,

- maximum pressure difference bearable by the container,

- density of the air,

- density of sea water,

<u>The relation between the change in pressure with height is given as:</u>

where:
dz = height in the atmosphere
= standard value of gravity
<em>Now putting the respective values:</em>



Is the maximum height above the ground that the container can be lifted before bursting. (<em>Since the density of air and the density of sea water are assumed to be constant.</em>)
I will say it is B; the Inverse square law.
Ohms has to do with electricity and the other 2 just have to do with regular physics.
Answer:
2.08 kg
Explanation:
Newton's second law states that the acceleration of an object is proportional to the force applied to the object, according to the equation:

where F is the force applied, m is the mass of the object and a its acceleration.
In this situation, the soccer ball is kicked with a force F=13.5 N and its acceleration is a=6.5 m/s^2, therefore its mass is

Answer:

Explanation:
given,
mass of spaceship(m) = 8600 Kg
Mass of earth = 5.972 x 10²⁴ Kg
position of movement of space ship
R₁ = 7300 Km
R₂ = 6700 Km
the kinetic energy of the spaceship increases by = ?
Increase in Kinetic energy = decrease in potential energy




