answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WITCHER [35]
2 years ago
11

If c1=c2=4.00μf and c4=8.00μf, what must the capacitance c3 be if the network is to store 2.70×10−3 j of electrical energy?

Physics
1 answer:
Akimi4 [234]2 years ago
7 0
Missing detail in the text: total voltage of the circuit \Delta V = 46.0 V
Missing figure: https://www.physicsforums.com/attachments/prob-24-68-jpg.190851/

Solution:

1) The energy stored in a circuit of capacitors is given by
U= \frac{1}{2} C_{eq} (\Delta V)^2
where C_{eq} is the equivalent capacitance of the circuit. We can find the value for C_{eq} by using \Delta V=46.0 V and the energy of the system, U=2.7\cdot 10^{-3} J
C_{eq}= \frac{2U}{(\Delta V)^2}=2.55\cdot 10^{-6} F=2.55\mu F

2) Then, let's calculate the equivalente capacitance of C1 and C2. The two capacitors are in series, so their equivalente capacitance is given by
\frac{1}{C_{12}}= \frac{1}{C_1}+ \frac{1}{C_2}= \frac{1}{4 \mu F} + \frac{1}{4 \mu F}
from which we find C_{12}=2 \mu F

3) Then let's find C_{123}, the equivalent capacitance of C_{12} and C3. C_{123} is in series with C4, therefore we can write
\frac{1}{C_{eq}}= \frac{1}{C_{123}}+ \frac{1}{C_4}
Since we already know C_4=8 \mu F and C_{eq}=2.55 \mu F, we find
C_{123}=3.70 \mu F

4) Finally, we can find C_{3}, because it is in parallel with C_{12}, and the equivalent capacitance of the two must be equal to C_{123}:
C_{123}=C_{12}+C_3
So, using C_{123}=3.70 \mu F and C_{12}=2 \mu F, we find
C_3=1.70 \mu F

You might be interested in
The velocity component with which a projectile covers certain horizontal distance is maximum at the moment of? a) Hitting the gr
Crazy boy [7]
A) hitting the ground
3 0
2 years ago
Imagine you want to get 1 kcal of energy from a cow. How much energy would the cow need to get from plants? Why?
ZanzabumX [31]
1000 kcal because you only get 10% of the energy of the thing you eat
7 0
2 years ago
Consider the position vs. time graph below for a woman's movement in a hallway. What is the woman's velocity from 4 to 5 s?
Ksenya-84 [330]

Answer:

The answer is "6\  \frac{m}{s}"

Explanation:

The formula for velocity:

\to \overline{v}={\frac{\Delta x}{\Delta t}}

      =\frac{6}{1}\\\\=6\  \frac{m}{s}

7 0
1 year ago
Two horizontal rods are each held up by vertical strings tied to their ends. Rod 1 has length L and mass M; rod 2 has length 2L
antiseptic1488 [7]

Answer:

Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.

Explanation:

For the rod 1 the angular acceleration is

\tau_1 = I_1\alpha _1 \\\\\alpha_1 = \dfrac{\tau_1}{I_1}

Similarly, for rod 2

\alpha_2 = \dfrac{\tau_2}{I_2}.

Now, the moment of inertia for rod 1 is

I_1 = \dfrac{1}{3}ML^2,

and the torque acting on it is (about the center of mass)

\tau_1 = Mg\dfrac{L}{2};

therefore, the angular acceleration of rod 1 is  

\alpha_1 = \dfrac{Mg\dfrac{L}{2}}{\dfrac{1}{3}ML^2},

\boxed{\alpha_1 = \dfrac{3g}{2L} }

Now, for rod 2 the moment of inertia is

I_2 = \dfrac{1}{3}(2M)(2L)^2

I_2 = \dfrac{8}{3} ML^2,

and the torque acting is (about the center of mass)

\tau _2 = (2M)g \dfrac{(2L)}{2}

\tau _2 = 2MgL;

therefore, the angular acceleration \alpha_2 is

\alpha_2 = \dfrac{2MgL;}{\dfrac{8}{3} ML^2,}.

\boxed{\alpha_2 = \dfrac{3g}{4L}}

We see here that

\dfrac{3g}{2L} > \dfrac{3g}{4L}

therefore

\boxed{\alpha_1 > \alpha_2.}

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.

7 0
1 year ago
A packing crate with mass 80.0 kg is at rest on a horizontal, frictionless surface. At t = 0 a net horizontal force in the +x-di
Nataly [62]

Answer:

Final speed of the crate is 15 m/s

Explanation:

As we know that constant force F = 80 N is applied on the object for t = 12 s

Now we can use definition of force to find the speed after t = 12 s

F . t = m(v_f - v_i)

so here we know that object is at rest initially so we have

80 (12) = 80( v_f - 0)

v_f = 12 m/s

Now for next 6 s the force decreases to ZERO linearly

so we can write the force equation as

F = 80 - \frac{40}{3} t

now again by same equation we have

\int F .dt = m(v_f - v_i)

\int (80 - (40/3)t) dt = 80(v_f - 12)

80 t - \frac{40t^2}{6} = 80(v_f - 12)

put t = 6 s

480 - 240 = 80(v_f - 12)

v_f = 12 + 3

v_f = 15 m/s

6 0
2 years ago
Other questions:
  • Anna is sitting in a moving cart and throws a ball straight up. Theoretically, the ball should land in the cart, but it lands on
    7·2 answers
  • A beaker contain 200mL of water<br> What is its volume in cm3 and m3
    5·2 answers
  • The air in tires can support a car because gases __________.
    5·1 answer
  • An application of this principle is that a line mounted on transparent slide casts the same diffraction pattern as a dark film w
    12·1 answer
  • platform diving in the olympic games takes place at two heights: 5 meters and 10 meters. What is the velocity of a diver enterin
    5·1 answer
  • When work is done by an applied force, the object's energy will change. In this Interactive, does the work cause a kinetic energ
    13·1 answer
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges with a speed of 90 m/s. Let's as
    14·1 answer
  • A 620-g object traveling at 2.1 m/s collides head-on with a 320-g object traveling in the opposite direction at 3.8 m/s. If the
    8·2 answers
  • A. curious kitten pushes a ball of yarn at rest with its nose, displacing the ball of yarn 0.175 m in 2.00s. What is the acceler
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!