answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WITCHER [35]
2 years ago
11

If c1=c2=4.00μf and c4=8.00μf, what must the capacitance c3 be if the network is to store 2.70×10−3 j of electrical energy?

Physics
1 answer:
Akimi4 [234]2 years ago
7 0
Missing detail in the text: total voltage of the circuit \Delta V = 46.0 V
Missing figure: https://www.physicsforums.com/attachments/prob-24-68-jpg.190851/

Solution:

1) The energy stored in a circuit of capacitors is given by
U= \frac{1}{2} C_{eq} (\Delta V)^2
where C_{eq} is the equivalent capacitance of the circuit. We can find the value for C_{eq} by using \Delta V=46.0 V and the energy of the system, U=2.7\cdot 10^{-3} J
C_{eq}= \frac{2U}{(\Delta V)^2}=2.55\cdot 10^{-6} F=2.55\mu F

2) Then, let's calculate the equivalente capacitance of C1 and C2. The two capacitors are in series, so their equivalente capacitance is given by
\frac{1}{C_{12}}= \frac{1}{C_1}+ \frac{1}{C_2}= \frac{1}{4 \mu F} + \frac{1}{4 \mu F}
from which we find C_{12}=2 \mu F

3) Then let's find C_{123}, the equivalent capacitance of C_{12} and C3. C_{123} is in series with C4, therefore we can write
\frac{1}{C_{eq}}= \frac{1}{C_{123}}+ \frac{1}{C_4}
Since we already know C_4=8 \mu F and C_{eq}=2.55 \mu F, we find
C_{123}=3.70 \mu F

4) Finally, we can find C_{3}, because it is in parallel with C_{12}, and the equivalent capacitance of the two must be equal to C_{123}:
C_{123}=C_{12}+C_3
So, using C_{123}=3.70 \mu F and C_{12}=2 \mu F, we find
C_3=1.70 \mu F

You might be interested in
Un tren emplea cierto tiempo en recorrer 240 km. Si la velocidad hubiera sido 20 km por hora mas que la que llevaba hubiera tard
podryga [215]

Answer:

A train takes some time to travel 240 km. If the speed had been 20 km per hour more than the one it was carrying, it would have taken 2 hours less to travel this distance. In what time did he cover the 240 km

Explanation:

Given that,

A train travelled a distance of 240km

Let the initial speed be

S_1 = x km/hr

Let assume the time spent on the first journey is

t_1 = a

Now if he increase the speed to

S_2 = (x + 20) km/hr

Then, he would have take 2hrs less time

Then, time t_2 = a - 2

The common data fore the two journey is the distance

Speed = distance / time

For the first stage

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x•a

x = 240 / a Equation 1

For stage two

d = S_2 × t_2

d = (x+20) × (a - 2)

240 = (x+20) × (a - 2). Equation 2

Substitute equation 1 into 2

240 = (240/a + 20) × (a -2)

240 = 240 - 480/a + 20a - 40

240 - 240 + 40 = - 480/a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Divided through by 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a(a+4) -6(a+4) = 0

(a-6)(a+4) = 0

(a-6) = 0 or (a+4) = 0

So, a = 6 or a = -4

The time cannot be negative, then, the time is a = 6hours

So, t_1 = a = 6hours,

So, the time used in the first journey is 6hours

So, in the second journey the time use is 2hours less than the first journey

Then, t_2 = 6 - 2 = 4 hours

t_1 = 6 hours

t_2 = 4 hours

Spanish

Un tren recorrió una distancia de 240 km.

Deje que la velocidad inicial sea

S_1 = x km / h

Supongamos que el tiempo dedicado al primer viaje es

t_1 = a

Ahora si aumenta la velocidad a

S_2 = (x + 20) km / h

Entonces, habría tomado 2 horas menos de tiempo

Entonces, el tiempo t_2 = a - 2

Los datos comunes para los dos viajes son la distancia.

Velocidad = distancia / tiempo

Para la primera etapa

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x • a

x = 240 / a Ecuación 1

Para la etapa dos

d = S_2 × t_2

d = (x + 20) × (a - 2)

240 = (x + 20) × (a - 2). Ecuación 2

Sustituye la ecuación 1 en 2

240 = (240 / a + 20) × (a -2)

240 = 240 - 480 / a + 20a - 40

240 - 240 + 40 = - 480 / a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Dividido entre 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a (a + 4) -6 (a + 4) = 0

(a-6) (a + 4) = 0

(a-6) = 0 o (a + 4) = 0

Entonces, a = 6 o a = -4

El tiempo no puede ser negativo, entonces, el tiempo es a = 6 horas

Entonces, t_1 = a = 6 horas,

Entonces, el tiempo utilizado en el primer viaje es de 6 horas

Entonces, en el segundo viaje, el uso del tiempo es 2 horas menos que el primer viaje

Entonces, t_2 = 6 - 2 = 4 horas

t_1 = 6 horas

t_2 = 4 horas

5 0
2 years ago
A 0.0140 kg bullet traveling at 205 m/s east hits a motionless 1.80 kg block and bounces off it, retracing its original path wit
makvit [3.9K]

Answer:

Final velocity of the block = 2.40 m/s east.

Explanation:

Here momentum is conserved.

Initial momentum = Final momentum

Mass of bullet = 0.0140 kg

Consider east as positive.

Initial velocity of bullet = 205 m/s

Mass of Block = 1.8 kg

Initial velocity of block = 0 m/s

Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s

Final velocity of bullet = -103 m/s

We need to find final velocity of the block( u )

Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u

We have

            2.87 = -1.442 + 1.8 u

               u = 2.40 m/s

Final velocity of the block = 2.40 m/s east.

7 0
2 years ago
A nonuniform beam 4.50 m long and weighing 1.40 kN makes an angle of 25.0° below the horizontal. It is held in position by a fri
liubo4ka [24]

Answer:

T = 7.64 kN

F_y = 0.52 kN(Downwards)

F_x = 3.23 kN (Towards Left)

Explanation:

As we know that beam is in equilibrium

So here we can use torque balance as well as force balance for the beam

Now by torque balance equation at the pivot we can say

F(4.50 cos\theta) + mg(2cos\theta) = T \times 3

As we know that

mg = 1.40 kN

F = 5 kN

so we will have

5 kN(4.50 cos25) + 1.40 kN(2 cos25) = 3 T

T = 7.64 kN

Now force balance in vertical direction

F + mg = Tsin65 + F_y

5 + 1.40 = 7.64 sin65 + F_y

F_y = 0.52 kN(Downwards)

Force balance in horizontal direction

F_x = T cos65

F_x = 7.64 cos65

F_x = 3.23 kN (Towards Left)

7 0
2 years ago
What is the gauge pressure of the water right at the point p, where the needle meets the wider chamber of the syringe? neglect t
Helen [10]

Missing details: figure of the problem is attached.

We can solve the exercise by using Poiseuille's law. It says that, for a fluid in laminar flow inside a closed pipe,

\Delta P =  \frac{8 \mu L Q}{\pi r^4}

where:

\Delta P is the pressure difference between the two ends

\mu is viscosity of the fluid

L is the length of the pipe

Q=Av is the volumetric flow rate, with A=\pi r^2 being the section of the tube and v the velocity of the fluid

r is the radius of the pipe.

We can apply this law to the needle, and then calculating the pressure difference between point P and the end of the needle. For our problem, we have:

\mu=0.001 Pa/s is the dynamic water viscosity at 20^{\circ}

L=4.0 cm=0.04 m

Q=Av=\pi r^2 v= \pi (1 \cdot 10^{-3}m)^2 \cdot 10 m/s =3.14 \cdot 10^{-5} m^3/s

and r=1 mm=0.001 m

Using these data in the formula, we get:

\Delta P = 3200 Pa

However, this is the pressure difference between point P and the end of the needle. But the end of the needle is at atmosphere pressure, and therefore the gauge pressure (which has zero-reference against atmosphere pressure) at point P is exactly 3200 Pa.

8 0
1 year ago
Janice is unsure about her future career path. She has grown up on her family farm, but she is also interested in medicine. Jani
Vika [28.1K]

Answer:

d not joining FRA and joining HOSA INSTEAD

3 0
2 years ago
Read 2 more answers
Other questions:
  • Determine the cutting force f exerted on the rod s in terms of the forces p applied to the handles of the heavy-duty cutter.
    11·2 answers
  • A box weighing 46 newtons rests on an incline that makes an angle of 25° with the horizontal. What is the magnitude of the compo
    5·1 answer
  • A(n) ________ has charge but negligible mass, whereas a(n) ________ has mass but no charge.
    10·2 answers
  • On a snowy day, when the coefficient of friction μs between a car’s tires and the road is 0.50, the maximum speed that the car c
    6·2 answers
  • A satellite with a mass of 5.6 E 5 kg is orbiting the Earth in a circular path. Determine the satellite's velocity if it is orbi
    13·1 answer
  • A block moves at 5 m/s in the positive x direction and hits an identical block, initially at rest. A small amount of gunpowder h
    10·1 answer
  • The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (
    12·1 answer
  • When laser light shines on a screen after passing through two closely spaced slits, it becomes
    9·1 answer
  • Dua buah cermin datar X dan Y saling berhadapan dan membentuk sudut 60 derajat. Seberkas cahaya menuju X dengan sudut datang 60
    9·1 answer
  • Using Newton’s second law, why do you think a cotton ball may not be used as a baseball in a baseball game.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!