From the items on this list, the only one that allows calculation
of the mechanical advantage is 'B' ... the lengths from the fulcrum
to the effort and the resistance.
The MA can also be calculated when you know the two forces ...
the effort and the resistance ... when the lever is just balanced.
Answer:
The torque on the child is now the same, τ.
Explanation:
- It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
- In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
- The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of the mass of the child times the square of the distance to the center.
- When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

- When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

- Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:
τ = 3/4*m*r² * (2α) = 3/2*m*r²
same result than in (2), so the torque remains the same.
5,10,15,20,25,30, that's how much it should have been
Answer:
Explanation:
Given that,
Spring constant = 16N/m
Extension of spring
x = 8cm = 0.08m
Mass
m = 5g =5/1000 = 0.005 kg
The ball will leave with a speed that makes its kinetic energy equal to the potential energy of the compressed spring.
So, Using conservation of energy
Energy in spring is converted to kinectic energy
So, Ux = K.E
Ux = ½ kx²
Then,
Ux = ½ × 16 × 0.08m²
Ux = 0.64 J
Since, K.E = Ux
K.E = 0.64 J
Answer:
The average magnitude of magnetic field B= 0.0433/ d Tesla
(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)
Explanation:
Induced emf
where B= magnetic field
d= breadth of rectangular piece
V= velocity with which the rectangular piece = o.o6m/s
n= no of turns = 10
EMF = 26mV
since d (breadth of the frame) is not given, I will use it as a variable
EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)
From eq 1, we get
B= (EMF)/(n d V)
B= (26 X 0.001) / (10 d 0.06)
B= 0.0433/ d Tesla