answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vedmedyk [2.9K]
2 years ago
10

Un electrón en un tubo de rayos catódicos acelera desde el reposo con una aceleración constante de 5.33x10¹²m/s² durante 0.150μs

(1μs-10⁻⁶s). El electrón se mueve otros 0.200μs a velocidad constante y, finalmente se para con una aceleración de -2.67x10¹³m/s² ¿Qué distancia recorre el electrón?
Physics
1 answer:
Andre45 [30]2 years ago
3 0
Can you translate that in English ? I'll try to help you out with that..
You might be interested in
When calculating the mechanical advantage of a lever, what two pieces of information are needed?
DIA [1.3K]
From the items on this list, the only one that allows calculation
of the mechanical advantage is 'B' ... the lengths from the fulcrum
to the effort and the resistance.

The MA can also be calculated when you know the two forces ...
the effort and the resistance ... when the lever is just balanced.
4 0
2 years ago
Read 2 more answers
A child of mass m is at the edge of a merry-go-round of diameter d. When the merry-go-round is rotating with angular acceleratio
dem82 [27]

Answer:

The torque on the child is now the same, τ.

Explanation:

  • It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
  • In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
  • The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of  the mass of the child times the square of the distance to the center.
  • When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

       I_{to} = I_{d} + m*r^{2}  = m*\frac{r^{2}}{2} +  m*r^{2} = \frac{3}{2}*  m*r^{2} (1)

  • So, τ = 3/2*m*r²*α (2)
  • When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

       I_{t} = I_{d} + m*\frac{r^{2}}{4}   = m*\frac{r^{2}}{2} + m*\frac{r^{2}}{4}  = \frac{3}{4}*  m*r^{2} (3)

  • Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:

       τ = 3/4*m*r² * (2α) = 3/2*m*r²

        same result than in (2), so the torque remains the same.

7 0
2 years ago
4. Susan observed that different kinds and amounts of fossils were present in a cliff behind her house. She wondered why changes
posledela
5,10,15,20,25,30, that's how much it should have been
3 0
2 years ago
Read 2 more answers
A spring-powered dart gun is unstretched and has a spring constant 16.0 N/m. The spring is compressed by 8.0 cm and a 5.0 gram p
stepladder [879]

Answer:

Explanation:

Given that,

Spring constant = 16N/m

Extension of spring

x = 8cm = 0.08m

Mass

m = 5g =5/1000 = 0.005 kg

The ball will leave with a speed that makes its kinetic energy equal to the potential energy of the compressed spring.

So, Using conservation of energy

Energy in spring is converted to kinectic energy

So, Ux = K.E

Ux = ½ kx²

Then,

Ux = ½ × 16 × 0.08m²

Ux = 0.64 J

Since, K.E = Ux

K.E = 0.64 J

4 0
1 year ago
Based on the emf value measured at frame 700, what is the average magnitude of the magnetic field inside the magnet assembly? No
Nadusha1986 [10]

Answer:

The average magnitude of magnetic field B= 0.0433/ d Tesla

(You have not provided length of side of loop, so if you divide this value by length you will get value of magnetic field.)

Explanation:

Induced emf

where B= magnetic field  

d= breadth of rectangular piece

V= velocity with which the rectangular piece = o.o6m/s

n= no of turns  = 10

EMF = 26mV

since d (breadth of the frame) is not given, I will use it as a variable

EMF= n×B×d×V ------------------(1) (EMF induced due to multiple turns)

From eq 1, we get

B= (EMF)/(n d V)

B= (26 X 0.001) / (10 d 0.06)

B= 0.0433/ d Tesla

4 0
2 years ago
Other questions:
  • Moving company uses a machine to raise a 900 Newton refrigerator to the second floor of a building machine consists of a single
    8·2 answers
  • A power washer is being used to clean the siding of a house. Water enters at 20 C, 1 atm, with a volumetric flow rate of 0.1 lit
    13·1 answer
  • A viscous liquid is sheared between two parallel disks of radius �, one of which rotates with angular speed Ω, while the other i
    14·1 answer
  • A 1.7-kg block of wood rests on a rough surface. A 0.011-kg bullet strikes the block with a speed of 670 m/s and embeds itself.
    5·1 answer
  • An inductor is connected in series to a fully charged capacitor. Which of the following statements are true? Check all that appl
    14·1 answer
  • How many conditions does the NEC list whereby conductors shall be considered to be outside of a building or other structure?
    5·1 answer
  • 10 C of charge are placed on a spherical conducting shell. A point particle with a charge of –3C is placed at the center of the
    15·1 answer
  • A kayaker needs to paddle north across a 100-m-wide harbor. The tide is going out, creating a tidal current that flows to the ea
    9·1 answer
  • A 6V radio with a current of 2A is turned on for 5 minutes. Calculate the energy transferred in joules
    12·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!