Answer:
1.056 x 10⁷ lb-ft
Explanation:
v = Speed of the bike = 20 mph
t = time of travel = 2 h
d = distance traveled by cyclist
Distance traveled by cyclist is given as
d = v t
d = (20) (2)
d = 40 miles
We know that, 1 mile = 5280 ft
d = 40 (5280) ft
d = 211200 ft
F = force applied by cyclist = 50 lb
W = work done by cyclist
Work done by cyclist is given as
W = F d
W = (50) (211200)
W = 1.056 x 10⁷ lb-ft
The answer to this question is:
C-"That moving clocks run slower"
Your Welcome :)
The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
A cold acetic acid solution is used to wash the residue of
the reagent in preparation of an aldol condensation product after vacuum
filtration. The main reason in washing
with the acetic acid rinse is to neutralize any sodium hydroxide.