Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ... V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ... s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1; -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ... s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1; -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
Explanation:
It is given that,
The horizontal speed of a cliff diver, 
It reaches the water below 2.00 s later, t = 2 s
Let
is the distance where the diver hit the water. It can be calculated as follows :

Let
is the height of the cliff. It can be calculated using second equation of motion as follows :

So, the cliff is 19.6 m high and it will hit the water at a distance of 19.6 m.
Acceleration is the change in velocity divided by time. The change in velocity is -30m/s and time is 5s. If you divide -30m/s by 5s, you get -6m/s<span>².</span>
<span>If the net force acting on an object increases by 50 percent, then
the acceleration of the object will also increase by 50 percent.
This answer is not offered among the list of choices.
So the correct response is "D. none of the above"</span>
A challenge scientists face with this process is the use of ultrathin iron oxide, to pull protons off water and produce hydrogen gas, which itself is a poor electrical conductor.