The statement that could be made about the energy in this situation would be :
It being transferred from his arms muscles to the ball.
The muscle contraction from his arms created a force that could be used to lift the ball up.<span />
Reference frames describe the position of points relative to the body. These frames <span>are used to specify the relationship between a moving </span>observer and the phenomenon or phenomena under observation. Reference frame definitely changes when the body is changing. That is the reason that in order t<span>o describe the position of a point that moves relative to a body that is moving relative to the Earth, it is usually convenient to use a reference frame attached to the moving body.</span>
Answer:

Explanation:
Given:
Initial velocity of the vehicle, 
distance between the car and the tree, 
time taken to respond to the situation, 
acceleration of the car after braking, 
Using equation of motion:
..............(1)
where:
final velocity of the car when it hits the tree
initial velocity of the car when the tree falls
acceleration after the brakes are applied
distance between the tree and the car after the brakes are applied.

Now for this situation the eq. (1) becomes:
(negative sign is for the deceleration after the brake is applied to the car.)
<span>The potential difference Vwc between the wire and the cylinder produces an electric field of 2.00Ã104 volts per meter at a distance of 1.20 centimeters from the axis of the wire is
1160 V</span>
In case of a long wire, electric field E is inversely proportional to r
Therefore E= x/r or x = E*r
Now,
The total power emitted by an object via radiation is:

where:
A is the surface of the object (in our problem,


is the emissivity of the object (in our problem,

)

is the Stefan-Boltzmann constant
T is the absolute temperature of the object, which in our case is

Substituting these values, we find the power emitted by radiation:

So, the correct answer is D.