answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
2 years ago
6

a truss is made by hinging two uniform, 150-N rafters as shown in Fig. 5-21. They rest on an essentially frictionless floor and

are held together by a tie rope. A 500-N load is held at their apex. Find the tension in the tie rope.
Physics
1 answer:
Nataly_w [17]2 years ago
7 0
<span>Let L and R be the left and right vertical floor reactions
let T be the tension of the rope
 summation of all forces is zero

R + L - 500 - 150- 150 = 0

R + L = 800

 since the triangle formed is isosceles triangles, the legs are equal
R = L = 400 N

using the summation of the torque

  L [ 4] - T[ 3 - (2 *3/5)] = 0
400 [ 4] - T[ 1.8] = 0
T = 1600/1.8
T = 889 N </span>
You might be interested in
Alex throws a 0.15-kg rubber ball down onto the floor. The ball’s speed just before impact is 6.5 m/s, and just after is 3.5 m/s
Jet001 [13]

Answer: Change in ball's momentum is 1.5 kg-m/s.

Explanation: It is given that,

Mass of the ball, m = 0.15 kg

Speed before the impact, u = 6.5 m/s

Speed after the impact, v = -3.5 m/s (as it will rebound)

We need to find the change in the magnitude of the ball's momentum. It is given by :

So, the change in the ball's momentum is 1.5 kg-m/s. Hence, this is the required solution.

Read more on Brainly.com - brainly.com/question/12946012#readmore

7 0
1 year ago
A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin
KengaRu [80]

a) 219.8 rad/s

b) 20.0 rad/s^2

c) 2.9 m/s^2

d) 7005 m/s^2

e) Towards the axis of rotation

f) 0 m/s^2

g) 31.9 m/s

Explanation:

a)

The angular velocity of an object in rotation is the rate of change of its angular position, so

\omega=\frac{\theta}{t}

where

\theta is the angular displacement

t is the time elapsed

In this problem, we are told that the maximum angular velocity is

\omega_{max}=35 rev/s

The angle covered during 1 revolution is

\theta=2\pi rad

Therefore, the maximum angular velocity is:

\omega_{max}=35 \cdot 2\pi = 219.8 rad/s

b)

The angular acceleration of an object in rotation is the rate of change of the angular velocity:

\alpha = \frac{\Delta \omega}{t}

where

\Delta \omega is the change in angular velocity

t is the time elapsed

Here we have:

\omega_0 = 0 is the initial angular velocity

\omega_{max}=219.8 rad/s is the final angular velocity

t = 11 s is the time elapsed

Therefore, the angular acceleration is:

\alpha = \frac{219.8-0}{11}=20.0 rad/s^2

c)

For an object in rotation, the acceleration has two components:

- A radial acceleration, called centripetal acceleration, towards the centre of the circle

- A tangential acceleration, tangential to the circle

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

Here we have

\alpha =20.0 rad/s^2

d = 29 cm is the diameter, so the radius is

r = d/2 = 14.5 cm = 0.145 m

So the tangential acceleration is

a_t=(20.0)(0.145)=2.9 m/s^2

d)

The magnitude of the radial (centripetal) acceleration is given by

a_c = \omega^2 r

where

\omega is the angular velocity

r is the radius of the circle

Here we have:

\omega_{max}=219.8 rad/s is the angular velocity when the fan is at full speed

r = 0.145 m is the distance of the gum from the centre of the circle

Therefore, the radial acceleration is

a_c=(219.8)^2(0.145)=7005 m/s^2

e)

The direction of the centripetal acceleration in a rotational motion is always towards the centre of the axis of rotation.

Therefore also in this case, the direction of the centripetal acceleration is towards the axis of rotation of the fan.

f)

The magnitude of the tangential acceleration of the fan at any moment is given by

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

When the fan is rotating at full speed, we have:

\alpha=0, since the fan is no longer accelerating, because the angular velocity is no longer changing

r = 0.145 m

Therefore, the tangential acceleration when the fan is at full speed is

a_t=(0)(0.145)=0 m/s^2

g)

The linear speed of an object in rotational motion is related to the angular velocity by the formula:

v=\omega r

where

v is the linear speed

\omega is the angular velocity

r is the radius

When the fan is rotating at maximum angular velocity, we have:

\omega=219.8 rad/s

r = 0.145 m

Therefore, the linear speed of the gum as it is un-stucked from the fan will be:

v=(219.8)(0.145)=31.9 m/s

7 0
2 years ago
The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This sp
Delvig [45]

Answer:

Explanation:

Here is the full question and answer,

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.

When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.

Part A: At what speed v should an archerfish spit the water to shoot down a floating insect located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60 degrees above the water surface.

Part B: Now assume that the insect, instead of floating on the surface, is resting on a leaf above the water surface at a horizontal distance 0.600 m away from the fish. The archerfish successfully shoots down the resting insect by spitting water drops at the same angle 60 degrees above the surface and with the same initial speed v as before. At what height h above the surface was the insect?

Answer

A.) The path of a projectile is horizontal and symmetrical ground. The time is taken to reach maximum height, the total time that the particle is in flight will be double that amount.

Calculate the speed of the archer fish.

The time of the flight of spitted water is,

t = \frac{{2v\sin \theta }}{g}

Substitute 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g and 60^\circ  for \theta in above equation.

t = \frac{{2v\sin 60^\circ }}{{9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}}}\\\\ = \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\  

Spitted water will travel 0.80{\rm{ m}} horizontally.

Displacement of water in this time period is

x = vt\cos \theta

Substitute \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2} for t\rm 60^\circ[tex] for [tex]\theta and 0.80{\rm{ m}} for x in above equation.

\\0.80{\rm{ m}} = v\left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\left( {\cos 60^\circ } \right)\\\\0.80{\rm{ m}} = {v^2}\left( {0.1767{\rm{ }}} \right)\frac{1}{2}{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\\\v = \sqrt {\frac{{2\left( {0.80{\rm{ m}}} \right)}}{{0.1767\;{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}}}} \\\\ = 3.01{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

B.) There are two component of velocity vertical and horizontal. Calculate vertical velocity and horizontal velocity when the angle is given than calculate the time of flight when the horizontal distance is given. Value of the horizontal distance, angle and velocity are given. Use the kinematic equation to solve the height of insect above the surface.

Calculate the height of insect above the surface.

Vertical component of the velocity is,

{v_v} = v\sin \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_v} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\sin 60^\circ \\\\ = 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

Horizontal component of the velocity is,

{v_h} = v\cos \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_h} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\cos 60^\circ \\\\ = 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

When horizontal ({0.60\;{\rm{m}}} distance away from the fish.  

The time of flight for distance (d) is ,

t = \frac{d}{{{v_h}}}

Substitute 0.60\;{\rm{m}} for d and 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_h} in equation t = \frac{d}{{{v_h}}}

\\t = \frac{{0.60\;{\rm{m}}}}{{1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}}}\\\\ = 0.3987{\rm{ s}}\\

Distance of the insect above the surface is,

s = {v_v}t + \frac{1}{2}g{t^2}

Substitute 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_v} and 0.3987{\rm{ s}} for t and - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g in above equation.

\\s = \left( {2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\left( {0.3987{\rm{ s}}} \right) + \frac{1}{2}\left( { - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}} \right){\left( {0.3987{\rm{ s}}} \right)^2}\\\\ = 0.260{\rm{ m}}\\

7 0
2 years ago
The mass of the Sun is 2 × 1030 kg, and the distance between Neptune and the Sun is 30 AU. What is the orbital period of Neptune
Veronika [31]
Kepler's third law states that, for a planet orbiting around the Sun, the ratio between the cube of the radius of the orbit and the square of the orbital period is a constant:
\frac{r^3}{T^2}= \frac{GM}{4 \pi^2} (1)
where
r is the radius of the orbit
T is the period
G is the gravitational constant
M is the mass of the Sun

Let's convert the radius of the orbit (the distance between the Sun and Neptune) from AU to meters. We know that 1 AU corresponds to 150 million km, so
1 AU = 1.5 \cdot 10^{11} m
so the radius of the orbit is
r=30 AU = 30 \cdot 1.5 \cdot 10^{11} m=4.5 \cdot 10^{12} m

And if we re-arrange the equation (1), we can find the orbital period of Neptune:
T=\sqrt{ \frac{4 \pi^2}{GM} r^3} =  \sqrt{ \frac{4 \pi^2}{(6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2} )(2\cdot 10^{30} kg)}(4.5 \cdot 10^{12} m)^3 }= 5.2 \cdot 10^9 s

We can convert this value into years, to have a more meaningful number. To do that we must divide by 60 (number of seconds in 1 minute) by 60 (number of minutes in 1 hour) by 24 (number of hours in 1 day) by 365 (number of days in 1 year), and we get
T=5.2 \cdot 10^9 s /(60 \cdot 60 \cdot 24 \cdot 365)=165 years
3 0
1 year ago
Which letter correctly identifies the part of the hydrologic cycle that is most directly affected by impervious building materia
masha68 [24]

Infiltration

Explanation:

The component of the hydrologic cycle affected by impervious building such as concrete and asphalt is infiltration.

  • Water infiltration is a major component of the hydrologic cycle.
  • Concretes and other materials can prevent water from going down into the earth.
  • This affects the ground water system in place.
  • It leads to increase in surface run off and might cause inundation of an area.
  • Infiltration is a very important component of water cycle.
  • It takes water to plant root and recharges groundwater systems.
  • Impervious structures takes this capability away.

learn more:

Biogeochemical cycle brainly.com/question/3509510

#learnwithBrainly

3 0
2 years ago
Other questions:
  • A band director instructs students to play a pitch louder. How will the sound wave change when the band plays the same pitch lou
    8·2 answers
  • What are the two forces that keep a pendulum swinging?
    13·1 answer
  • The surface pressures at the bases of warm and cold columns of air are equal. air pressure in the warm column of air will ______
    11·1 answer
  • Three point charges, q1 , q2 , and q3 , lie along the x-axis at x = 0, x = 3.0 cm, and x = 5.0 cm, respectively. calculate the m
    9·1 answer
  • if you apply a Force of F1 to area A1 on one side of a hydraulic jack, and the second side of the jack has an area that is twice
    7·1 answer
  • A block is suspended from a scale and then lowered into a bucket of water. The density of the water is 1 gm/cm3. The initial rea
    7·1 answer
  • A large crate with mass m rests on a horizontal floor. The static and kinetic coefficients of friction between the crate and the
    5·2 answers
  • A woman makes 50% more than her husband. Together they make $2500 each month? How much does the woman earn each month?a) $950b)
    6·1 answer
  • A nonrelativistic electron is accelerated from rest through a potential difference. After acceleration the electron has a de Bro
    14·1 answer
  • Each plate of a parallel-plate capacator is a square with side length r, and the plates are separated by a distance d. The capac
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!