Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
<span>When the particles of a medium move with simple harmonic motion, this means the wave is a sinusoidal wave.
Know that a sinusoidal curve can describe either sine or cosine functions (remember your cofunction identities for sine and cosine).</span>
Question
Initially, the baton is spinning about a line through its center at angular velocity 3.00 rad/s. What is its angular momentum? Express your answer in kilogram meters squared per second.
Answer:

Explanation:
The angular momentum L of the baton moving about an axis perpendicular to it, passing through the center of the baton is,

Here, l is the length of the baton.
Substitute 0.120 kg for m, 3 rads/s for ![\omega[\tex] and 0.8 m for l [tex]\begin{array}{c}\\L = \frac{1}{{12}}m{l^2}\omega \\\\ = \frac{1}{{12}}\left( {0.120{\rm{ kg}}} \right){\left( {{\rm{80}}{\rm{.0 cm}}} \right)^2}{\left( {\frac{{1 \times {{10}^{ - 2}}{\rm{m}}}}{{1{\rm{ cm}}}}} \right)^2}\left( {{\rm{3}}{\rm{.00 rad/s}}} \right)\\\\ = 0.0192{\rm{ kg}} \cdot {{\rm{m}}^{\rm{2}}}{\rm{/s}}\\\end{array}](https://tex.z-dn.net/?f=%5Comega%5B%5Ctex%5D%20and%200.8%20m%20for%20l%20%5Btex%5D%5Cbegin%7Barray%7D%7Bc%7D%5C%5CL%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7Dm%7Bl%5E2%7D%5Comega%20%5C%5C%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B%7B12%7D%7D%5Cleft%28%20%7B0.120%7B%5Crm%7B%20kg%7D%7D%7D%20%5Cright%29%7B%5Cleft%28%20%7B%7B%5Crm%7B80%7D%7D%7B%5Crm%7B.0%20cm%7D%7D%7D%20%5Cright%29%5E2%7D%7B%5Cleft%28%20%7B%5Cfrac%7B%7B1%20%5Ctimes%20%7B%7B10%7D%5E%7B%20-%202%7D%7D%7B%5Crm%7Bm%7D%7D%7D%7D%7B%7B1%7B%5Crm%7B%20cm%7D%7D%7D%7D%7D%20%5Cright%29%5E2%7D%5Cleft%28%20%7B%7B%5Crm%7B3%7D%7D%7B%5Crm%7B.00%20rad%2Fs%7D%7D%7D%20%5Cright%29%5C%5C%5C%5C%20%3D%200.0192%7B%5Crm%7B%20kg%7D%7D%20%5Ccdot%20%7B%7B%5Crm%7Bm%7D%7D%5E%7B%5Crm%7B2%7D%7D%7D%7B%5Crm%7B%2Fs%7D%7D%5C%5C%5Cend%7Barray%7D)
Answer:
Technician A is right. The situation will happens even with only two bulbs in series
Explanation:
We must take into account that
1.- All electric device need its nominal voltage to operate
2.-Any and all electric device means an electric load for the source in terms of equation that means any device will implies a drop voltage of V = I*R ( I the flows current and R the resistance of the device)
3.-Nominal voltage for bulbs are specify for houses voltages you find between fase and neutral wires for instance in Venezuela 120 (v).
4.-In a imaginary circuit of only one bulb, the nominal voltage will be applied and the bulb will operates correctly, but when you add another bulb (in series) the nominal voltage will split between the two bulbs ( we could find a situation such as the first bulb work properly but the second one does not). The voltage split according to Ohms law (in such way that the sum of voltage between the terminal of the first bulb plus the voltage at terminals of the second one are equal to nominal voltage.
For that reason all the bulbs are connected in parallel in wich case all of them will operate with the common voltage
Answer: 1 m/s
Explanation:
We have an object whose position
is given by a vector, where the components X and Y are identified by the unit vectors
and
(where each unit vector is defined to have a magnitude of exactly one):
![r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=r%3D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
On the other hand, velocity is defined as the variation of the position in time:

This means we have to derive
:
![\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5Cfrac%7Bd%7D%7Bdt%7D%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
This is the velocity vector
And when
the velocity vector is:

This is the velocity vector at 2 seconds
However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed
:


Finally:
This is the speed of the object at 2 seconds