Answer:
0.0000045 s
Explanation:
f = Frequency = 8 MHz
Clock cycle is given by

Time taken for 12 clock cycles

Time taken per instruction is 0.0000015 s
In reading and displaying information it requires 3 processes
1 for reading, 1 for searching and 1 for displaying.

Time taken is 0.0000045 s
They are both right because you can note both things, I mean Raphael and Lucinda, both has a right statement or explanation about the wave. Wave by nothing is both for its wavelength and for its frequency. So Raphael and Lucinda are both correct because you can note both wavelength and frequency.
The neutral pH is 7. Less than 7 indicates an acid and more than 7 indicates a base (up to 14).
<span>
NaCl - it's a salt (we can't measure the pH)
H2O - it can be an acid but also a base (the pH it is almost neutral,meaning close to 7 )
HF - it is a strong acid
</span><span>
KOH
- it is a strong base (pH=14)
</span>
↓
He needs to use HF (Hydrogen fluoride) to decrease the pH.
Answer:
a) 
b) 
c) Compressing is easier
Explanation:
Given:
Expression of force:

where:



when the spring is stretched
when the spring is compressed
hence,

a)
From the work energy equivalence the work done is equal to the spring potential energy:
here the spring is stretched so, 
Now,
The spring constant at this instant:



Now work done:



b)
When compressing the spring by 0.05 m
we have, 
<u>The spring constant at this instant:</u>



Now work done:



c)
Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.
Answer:
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Explanation:
Acceleration is the change in velocity per unit time
a = ∆v/t
Given;
∆v = 50.0miles/hour - 0
∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour
∆v = 22.352m/s
t = 2.22 s
So,
Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2