The light bulb, it takes electrical energy and turns it into l<span>ight energy!</span>
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ
Answer:
16,18,22
Or
1,3,7
Explanation:
The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation
Answer:
the required mass flow rate is 49484.37 kg/s
Explanation:
Given the data in the question;
we first determine the relation for mass flow rate of water that passes through the turbine;
so the relation for net work on the turbine due to the change in potential energy considering 100% efficiency is;
= m ( Δ P.E )
so we substitute (gh) for ( Δ P.E );
= m (gh)
m =
/ gh
so we substitute our given values into the equation
m = 100 MW / ( 9.81 m/s²) × 206 m
m = ( 100 MW × 10⁶W/MW) / ( 9.81 m/s²) × 206 m
m = 10 × 10⁷ / 2020.86
m = 49484.37 kg/s
Therefore, the required mass flow rate is 49484.37 kg/s