Answer: Option (c) is the correct answer.
Explanation:
Physical properties are the properties in which there is no change in chemical composition of a substance. On the other hand, chemical properties are the properties which change the chemical composition of a substance.
For example, when water boils at
then it changes into vapor state whereas when water freezes at
then it changes state from liquid to solid.
This means only physical state of water is changing and there is no change in chemical composition of water.
Hence, we can conclude that best option describing given information is that these are the physical changes water undergoes.
Answer:
The magnitude of the rate of change of the child's momentum is 794.11 N.
Explanation:
Given that,
Mass of child = 27 kg
Speed of child in horizontal = 10 m/s
Length = 3.40 m
There is a rate of change of the perpendicular component of momentum.
Centripetal force acts always towards the center.
We need to calculate the magnitude of the rate of change of the child's momentum
Using formula of momentum


Put the value into the formula


Hence, The magnitude of the rate of change of the child's momentum is 794.11 N.
Answer:
(a) A = 0.650 m
(b) f = 1.3368 Hz
(c) E = 17.1416 J
(d) K = 11.8835 J
U = 5.2581 J
Explanation:
Given
m = 1.15 kg
x = 0.650 cos (8.40t)
(a) the amplitude,
A = 0.650 m
(b) the frequency,
if we know that
ω = 2πf = 8.40 ⇒ f = 8.40 / (2π)
⇒ f = 1.3368 Hz
(c) the total energy,
we use the formula
E = m*ω²*A² / 2
⇒ E = (1.15)(8.40)²(0.650)² / 2
⇒ E = 17.1416 J
(d) the kinetic energy and potential energy when x = 0.360 m.
We use the formulas
K = (1/2)*m*ω²*(A² - x²) (the kinetic energy)
and
U = (1/2)*m*ω²*x² (the potential energy)
then
K = (1/2)*(1.15)*(8.40)²*((0.650)² - (0.360)²)
⇒ K = 11.8835 J
U = (1/2)*(1.15)*(8.40)²*(0.360)²
⇒ U = 5.2581 J
Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Answer:
An electromagnet is made by forming a coil around a soft iron bar (known here as the metal) such as a nail or screw and connect with an insulated copper wire (known here as the electric current conductor) the ends of the wound copper is then connected separately to the positive and negative terminals of a battery (known here as the source of electric current)
The north seeking needle of the magnetic compass will move away when brought close to the north pole of the formed electromagnet which can then be labelled N
The magnetic compass needle will be attracted to the south pole of the electromagnet which can then be labelled S
Explanation:
An electromagnet is an electric powered magnet that is formed (temporarily) by the perpendicular movement of electric current with respect to a metal core
The magnitude and the poles of an electromagnet can be changed by changing the magnitude and the direction of flow of the electric current respectively.