answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
antoniya [11.8K]
2 years ago
6

A sailboat starts from rest and accelerates at a rate of 0.21 m/s^2 over a distance of 280 m. find the magnitude of the boat's f

inal velocity. find the time it takes the boat to travel this distance.
Physics
1 answer:
sasho [114]2 years ago
8 0

We use the kinematic equations,

v=u+at                                          (A)

S= ut + \frac{1}{2} at^2                  (B)

Here, u is initial velocity, v is final velocity, a is acceleration and t is time.

Given,  u=0, a=0.21 \ m/s^2 and s= 280 m.

Substituting these values in equation (B), we get

280 \ m = 0 +\frac{1}{2} (0.21 m/s^2) t^2 \\\\ t^2 = \frac{280 \times 2}{0.21 } \\\\ t= 51.63 \ s.

Therefore from equation (A),

v = 0 + (0.21) \times (51.63 s)= 10.84 \ m/s

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s



You might be interested in
Identify the row that contains two scalars and one vector quantity: Distance Acceleration Velocity Speed Mass Acceleration Dista
GenaCL600 [577]

Answer:

Speed, mass and acceleration

Explanation:

A scalar quantity is a quantity that has only magnitude but no direction while a vector quantity has both magnitude and direction.

According to the question, the row that has two scalars and one vector is speed, mass and acceleration.

The two scalars in this row are speed and mass while the vector quantity there is the acceleration.

Acceleration has direction since it possess direction. A body accelerating will do so in a particular direction. Speed and mass doesn't possess any direction. Mass only specify the magnitude of the body but no clue as to which direction is the body moving towards.

Speed also only specify the

total distance covered with respect to time but not the direction of the direction.

8 0
2 years ago
Imagine you are riding on a yacht in the ocean and traveling at 20 mph. You then hit a golf ball at 100 mph from the deck of the
dangina [55]

According to Einstein's special theory of relativity, the speed of the light in a vacuum is the same no matter the speed with which an observer travels. So the answer should be A) 0,1c (1/10 the speed of light)

4 0
2 years ago
Read 2 more answers
How do Leeuwenhoek’s observations of animalcules compare to Hooke’s observations of cells in the cork?
fomenos

Answer:

Robert Hooke

Was the first to use the word "cell"

Observed cork cells

Anton van Leeuwenhoek

Observed "animalcules"

Used polished lens .

Explanation:

Anton van Leeuwenhoek is known as father of microbiology. He is credited to improve the quality of lens in microscope. His first observation of organisms called animalcules.

He is credited to have build microscope that could get magnified by 200 times. He used word animalcules for small organisms from pond water when first observed in microscope. He discovered protozoa and named it animalcules".

Robert Hooke is famed for discovering cell from a cork of plant. He observed a compartment or honey comb like divisions when observed these cork cells under the microscope and named it cell. He was only able to see the cell wall as the cork cells are dead cells.

8 0
2 years ago
What is the direction of the magnetic field b⃗ net at point a? Recall that the currents in the two wires have equal magnitudes.
andrew11 [14]

Answer:

Explanation:

The direction of a magnetic field indicates where the magnetic inluence on the electric charges are directed to.

From the given  question, we are to determine the direction of the magnetic field bnet at a point A.

Also, having the notion that  the currents in the two wires have equal magnitudes, Then:

\bar{B_{net}} = \bar{B_1} + \bar{B_2}

\bar{B_{net}} = \frac{\mu_oI}{2 \pi r } \bar {k}+ \frac{\mu_oI}{2 \pi r } \bar {k}

\bar{B_{net}} = \frac{2 \mu_oI}{2 \pi r } \bar {k} \ out

Thus; \bar{B_{net}} points out of the screen at A.

6 0
2 years ago
A high school physics instructor catches one of his students chewing gum in class. He decides to discipline the student by askin
KengaRu [80]

a) 219.8 rad/s

b) 20.0 rad/s^2

c) 2.9 m/s^2

d) 7005 m/s^2

e) Towards the axis of rotation

f) 0 m/s^2

g) 31.9 m/s

Explanation:

a)

The angular velocity of an object in rotation is the rate of change of its angular position, so

\omega=\frac{\theta}{t}

where

\theta is the angular displacement

t is the time elapsed

In this problem, we are told that the maximum angular velocity is

\omega_{max}=35 rev/s

The angle covered during 1 revolution is

\theta=2\pi rad

Therefore, the maximum angular velocity is:

\omega_{max}=35 \cdot 2\pi = 219.8 rad/s

b)

The angular acceleration of an object in rotation is the rate of change of the angular velocity:

\alpha = \frac{\Delta \omega}{t}

where

\Delta \omega is the change in angular velocity

t is the time elapsed

Here we have:

\omega_0 = 0 is the initial angular velocity

\omega_{max}=219.8 rad/s is the final angular velocity

t = 11 s is the time elapsed

Therefore, the angular acceleration is:

\alpha = \frac{219.8-0}{11}=20.0 rad/s^2

c)

For an object in rotation, the acceleration has two components:

- A radial acceleration, called centripetal acceleration, towards the centre of the circle

- A tangential acceleration, tangential to the circle

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

Here we have

\alpha =20.0 rad/s^2

d = 29 cm is the diameter, so the radius is

r = d/2 = 14.5 cm = 0.145 m

So the tangential acceleration is

a_t=(20.0)(0.145)=2.9 m/s^2

d)

The magnitude of the radial (centripetal) acceleration is given by

a_c = \omega^2 r

where

\omega is the angular velocity

r is the radius of the circle

Here we have:

\omega_{max}=219.8 rad/s is the angular velocity when the fan is at full speed

r = 0.145 m is the distance of the gum from the centre of the circle

Therefore, the radial acceleration is

a_c=(219.8)^2(0.145)=7005 m/s^2

e)

The direction of the centripetal acceleration in a rotational motion is always towards the centre of the axis of rotation.

Therefore also in this case, the direction of the centripetal acceleration is towards the axis of rotation of the fan.

f)

The magnitude of the tangential acceleration of the fan at any moment is given by

The tangential acceleration is given by

a_t = \alpha r

where

\alpha is the angular acceleration

r is the radius of the circle

When the fan is rotating at full speed, we have:

\alpha=0, since the fan is no longer accelerating, because the angular velocity is no longer changing

r = 0.145 m

Therefore, the tangential acceleration when the fan is at full speed is

a_t=(0)(0.145)=0 m/s^2

g)

The linear speed of an object in rotational motion is related to the angular velocity by the formula:

v=\omega r

where

v is the linear speed

\omega is the angular velocity

r is the radius

When the fan is rotating at maximum angular velocity, we have:

\omega=219.8 rad/s

r = 0.145 m

Therefore, the linear speed of the gum as it is un-stucked from the fan will be:

v=(219.8)(0.145)=31.9 m/s

7 0
2 years ago
Other questions:
  • You can enter units that are combinations of units with prefixes. however, you must maintain the same unit system given in the p
    6·2 answers
  • Determine the correlation between coronal mass ejections from the Sun to the accumulation of the rare and valuable isotope He3 t
    5·1 answer
  • 2. The water is then heated to its boiling point. Calculate the specific latent heat of
    9·1 answer
  • The acceleration due to gravity for any object, including 1 washer on the string, is always assumed to be m/s2. The mass of 3 wa
    7·2 answers
  • A 0.75μF capacitor is charged to 70 V . It is then connected in series with a 55Ω resistor and a 140 Ω resistor and allowed to d
    7·1 answer
  • For a short time the position of a roller-coaster car along its path is defined by the equations r=25 m, θ=(0.3t) rad, and z=(−8
    14·1 answer
  • A particle is located on the x axis at x = 2.0 m from the origin. A force of 25 N, directed 30° above the x axis in the x-y plan
    8·1 answer
  • A farsighted girl has a near point at 2.0 m but has forgotten her glasses at home. The girl borrows eyeglasses that have a power
    14·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • A wire loop is suspended from a string that is attached to point P in the drawing. When released, the loop swings downward, from
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!