<u>Given that</u>
mass (m) = 1300 Kg ,
height (h) = 1500 m
Determine the potential energy ?
P.E = m × g × h
= 1300 × 9.81 × 1500
= 19129500 Joules
= 19129.5 KJ
Answer:
d=0.137 m ⇒13.7 cm
Explanation:
Given data
m (Mass)=3.0 kg
α(incline) =34°
Spring Constant (force constant)=120 N/m
d (distance)=?
Solution
F=mg
F=(3.0)(9.8)
F=29.4 N
As we also know that
Force parallel to the incline=FSinα
F=29.4×Sin(34)
F=16.44 N
d(distance)=F/Spring Constant
d(distance)=16.44/120
d(distance)=0.137 m ⇒13.7 cm
Answer:
a) 600nm
b) 300nm
Explanation:
the path difference = 2t
t = thickness of the film
L' = wavelength of light in film = L/n
L = wavength of light in air
n = refractive index of glass
(a)
for destructive interference 2t = L'/2 = L/2n
L = 4*t*n
= 4*120*10^-9*1.25
L = 600 nm
(b)
for constructive interference 2t = L' = L/1.25
L = 2tn
= 2 × 1.25 × 120nm
= 300 nm
Answer:
uKkskdjod 7q and the rays are the best in all the ways ❤ ♥
Answer:

Explanation:
given,
mass of spaceship(m) = 8600 Kg
Mass of earth = 5.972 x 10²⁴ Kg
position of movement of space ship
R₁ = 7300 Km
R₂ = 6700 Km
the kinetic energy of the spaceship increases by = ?
Increase in Kinetic energy = decrease in potential energy




