answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fittoniya [83]
1 year ago
6

Ten days after it was launched toward Mars in December 1998, the Mars Climate Orbiter spacecraft (mass 629 kg) was 2.87×106km fr

om the earth and traveling at 1.20×104km/h relative to the earth.At this time, what were the following. (a) the spacecraft's kinetic energy relative to the earth J (b) the potential energy of the earth-spacecraft system J
Physics
1 answer:
Andreas93 [3]1 year ago
4 0

Answer:

3494444444.44444 J

-87077491.39453 J

Explanation:

M = Mass of Earth = 6.371\times 10^{6}\ kg

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

R = Radius of Earth = 6.371\times 10^{6}\ m

h = Altitude = 2.87\times 10^9\ m

m = Mass of satellite = 629 kg

v = Velocity of spacecraft = 1.2\times 10^4\ km/h

The kinetic energy is given by

K=\frac{1}{2}629\times \left(1.2\times 10^4\times \dfrac{1000}{3600}\right)^2\\\Rightarrow K=3494444444.44444\ J

The spacecraft's kinetic energy relative to the earth is 3494444444.44444 J

Potential energy is given by

U=-\dfrac{GMm}{R_e+h}\\\Rightarrow U=-\dfrac{6.67\times 10^{-11}\times 5.97\times 10^{24}\times 629}{2.87\times 10^9+6.371\times 10^{6}}\\\Rightarrow U=-87077491.39453\ J

The potential energy of the earth-spacecraft system is -87077491.39453 J

You might be interested in
A car moving with constant acceleration covers the distance between two points 60 m apart in 6.0 s. Its speed as it passes the s
BlackZzzverrR [31]

Answer:

The speed in the first point is: 4.98m/s

The acceleration is: 1.67m/s^2

The prior distance from the first point is: 7.42m

Explanation:

For part a and b:

We have a system with two equations and two variables.

We have these data:

X = distance = 60m

t = time = 6.0s

Sf = Final speed = 15m/s

And We need to find:

So = Inicial speed

a = aceleration

We are going to use these equation:

Sf^2=So^2+(2*a*x)

Sf=So+(a*t)

We are going to put our data:

(15m/s)^2=So^2+(2*a*60m)

15m/s=So+(a*6s)

With these equation, you can decide a method for solve. In this case, We are going to use an egualiazation method.

\sqrt{(15m/s)^2-(2*a*60m)}=So

15m/s-(a*6s)=So

\sqrt{(15m/s)^2-(2*a*60m)}=15m/s-(a*6s)

[\sqrt{(15m/s)^2-(2*a*60m)}]^{2}=[15m/s-(a*6s)]^{2}

(15m/s)^2-(2*a*60m)}=(15m/s)^{2}-2*(a*6s)*(15m/s)+(a*6s)^{2}

-120m*a=-180m*a+36s^{2}*a^{2}

0=120m*a-180m*a+36s^{2}*a^{2}

0=-60m*a+36s^{2}*a^{2}

0=(-60m+36s^{2}*a)*a

0=a1

\frac{60m}{36s^{2}} = a2

1.67m/s^{2}=a2

If we analyze the situation, we need to have an aceleretarion  greater than cero. We are going to choose a = 1.67m/s^2

After, we are going to determine the speed in the first point:

Sf=So+(a*t)

15m/s=So+1.67m/s^2*6s

15m/s-(1.67m/s^2*6s)=So

4.98m/s=So

For part c:

We are going to use:

Sf^2=So^2+(2*a*x)

(4.98m/s)^2=0^2+(2*(1.67m/s^2)*x)

\frac{24.80m^2/s^2}{3.34m/s^2}=x

7.42m=x

5 0
2 years ago
if it takes 3.5 hours for the hogwarts express moving at a speed of 120 mi/hr to make it from platform 9 and 3/4 to hogwarts how
Mila [183]
Use the formula distance = rate * time. substitute in the values you know, which gives you distance = 120mph * 3.5hours. multiply 120 and 3.5 to get distance = 420 miles.
4 0
2 years ago
Three particles are moving perpendicular to a uniform magnetic field and travel on circular paths (see the drawing). They have t
Vaselesa [24]

Explanation:

Radius of a charged particle is given by

r=mv / Bq

= k/ q

where   k   =   m v / B         is a constant.

i.e.   more is the magnitude of  charge, less is the radius. (inversely proportional)

From the diagram  r_3   >   r_2   >   r_1  (more the curvature, less is the radius)

( although drawing is not given i am assuming the above order, however, one can change the order as per the diagram. The concept used remains the same)

therefore,    q_1   >   q_2   >   q_3 .

7 0
2 years ago
A bug starts at point A, crawls 8.0 cm east, then 5.0 cm south, 3.0 west, and 4.0 cm north to point B.
Sholpan [36]

Answer:

5cm east& 1cm west from A

Explanation:

https://brainly.ph/question/2753392

7 0
1 year ago
A body is projected upward at an angle of 30 degree to the horizontal at an initial speed of 200ms-.In how many seconds will it
Crazy boy [7]

Answer:

20.41 s

3534.80 m

Explanation:

<em><u>In how many seconds will it reach the ground?</u></em>

We are given the initial velocity of the body, which is 200 m/s at a 30° angle.

We know the acceleration in the vertical direction is -9.8 m/s², assuming that the upwards/right direction is positive and the downwards/left direction is negative.

Since we are using acceleration in the y-direction, let's use the vertical component of the initial velocity.

  • 200 · sin(30) m/s

Let's use the fact that at the top of its trajectory, the body will have a final velocity of 0 m/s.

Now we have one missing variable that we are trying to solve for: time t.

Find the constant acceleration equation that contains v₀, v, a, and t.

  • v = v₀ + at

Substitute known values into the equation.

  • 0 = 200 · sin(30) + (-9.8)t
  • -200 · sin(30) = -9.8t
  • t = 10.20408163

Recall that this is only half of the body's trajectory, so we need to double the time value we found to find the total time the body is in the air.

  • 2t = 20.40816327

The body will reach the ground in 20.41 seconds.

<em><u>How far from the point of projection would it strike? </u></em>

We want to find the displacement in the x-direction for the body.

Let's find the constant acceleration equation that contains time t, that we just found, and displacement (Δx).

  • Δx = v₀t + 1/2at²

Substitute known values into the equation. Remember that we want to use the horizontal component of the initial velocity and that the acceleration in the x-direction is 0 m/s².

  • Δx = (200 · cos(30) · 20.40816327) + 1/2(0)(20.40816327)²
  • Δx = 3534.797567

The body will strike 3534.80 m from the point of projection.

4 0
1 year ago
Other questions:
  • Make a diagram showing the forces acting on a coasting bike rider traveling at 25km/h on a flat roadway.
    14·2 answers
  • A Federation starship (8.5 ✕ 106 kg) uses its tractor beam to pull a shuttlecraft (1.0 ✕ 104 kg) aboard from a distance of 14 km
    10·1 answer
  • What is tarzan's speed vf just before he reaches jane? express your answer in meters per second to two significant figures?
    7·1 answer
  • A small object slides along the frictionless loop-the-loop with a diameter of 3 m. what minimum speed must it have at the top of
    11·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • A brass lid screws tightly onto a glass jar at 20 degrees C. To help open the jar, it can be placed into a bath of hot water. Af
    9·1 answer
  • Consider a horizontal layer of the dam wall of thickness dx located a distance x above the reservoir floor. What is the magnitud
    10·1 answer
  • Arrange an 8-, 12-, and 16-Ω resistor in a combination that has a total resistance of 8.89 Ω pls with de work
    8·1 answer
  • the amplitude of an oscillator decreases to 36.8% of its initial value in 10.0 s. what is the value of the time constant
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!