answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svet_ta [14]
1 year ago
15

A boy drags a suitcase along the ground with a force of 100 N. If the frictional force opposing the motion of the suitcase is 50

N, what is the resultant forward force on the suitcase?
Physics
1 answer:
stira [4]1 year ago
4 0
Fortunately, 'force' is a vector.  So if you know the strength and direction
of each force, you can easily addum up and find the 'resultant' (net) force.

When we talk in vectors, one newton forward is the negative of
one newton backward.   Hold that thought, while I slog through
the complete solution of the problem.


            (100 N forward) plus (50 N backward)

        =  (100 N forward) minus (50 N forward)

        =           50 N forward .

That's it.
Is there any part of the solution that's not clear ?

You might be interested in
Ba-11 when passing through a lock, which light means "approach the lock under full control?"
s344n2d4d5 [400]

Answer

correct answer is Amber light

amber light signifies under full control

an amber light is an golden shaded traffic light demonstrating that vehicles should stop except if it is perilous to do as such, around proportional to the yellow light in the US. (US, dated) A yellow light.

6 0
2 years ago
Read 2 more answers
Falling raindrops frequently develop electric charges. Does this create noticeable forces between the droplets? Suppose two 1.8
Tema [17]

Answer:

The value of developed electric force is 3.516\times 10^{- 7} N

Solution:

As per the question:

Mass of the droplet = 1.8 mg = 1.8\times 10^{- 6} kg

Charge on droplet, Q = 25 pC = 25\times 10^{- 12} C

Distance between the 2 droplets, D = 0.40 cm = 0.004 m

Now, the Electrostatic force given by Coulomb:

F_{E} = \frac{1}{4\pi epsilon_{o}}.\frac{Q^{2}}{D^{2}}

\frac{1}{4\pi epsilon_{o}} = 9\times 10^{9} m/F

F_{E} = (9\times 10^{9}).\frac{(25\times 10^{- 12})^{2}}{0.004^{2}}

F_{E} = 3.516\times 10^{- 7} N

The magnitude of force is too low to be noticed.

8 0
1 year ago
Read 2 more answers
A basketball with mass of 0.8 kg is moving to the right with velocity 6 m/s and hits a volleyball with mass of 0.6 kg that stays
IceJOKER [234]

Answer:

26.67 m/s

Explanation:

From the law of conservation of linear momentum, the initial sum of momentum equals the final sum.

p=mv where p is momentum, m is the mass of object and v is the speed of the object

Initial momentum

The initial momentum will be that of basketball and volleyball, Since basketball is initially at rest, its initial velocity is zero

p_i= m_bv_b+m_vv_v=8*6+0.6*0=48 Kg.m/s

Final momentum

p_f= m_bv_b+m_vv_v=8*4+0.6*v_v=32+0.6v Kg.m/s\\32+0.6v_v=48\\0.6v=16\\v_v=16/0.6=26.66666667\approx 26.67 m/s

4 0
1 year ago
You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphe
madam [21]

Answer:

the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow.

Explanation:

We can answer this exercise using Gauss's law

      Ф = ∫ e . dA = q_{int} / ε₀

field flow is directly proportionate to the charge found inside it, therefore if we place a Gaussian surface outside the plastic spherical shell.  the flow must be zero since the charge of the sphere is equal  induced in the shell, for which the net charge is zero. we see with this analysis that this shell meets the requirement to block the elective field

From the same Gaussian law it follows that if the sphere is not in the center, the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow , so no matter where the sphere is, the total induced charge is always equal to the charge on the sphere.

5 0
2 years ago
a pebble is dropped down a well and hits the water 1.5 seconds later. using the equations for motion with constant acceleration,
Effectus [21]
Let h = the distance from the edge of the wall to the water surface (m).

Use g = 9.8 m/s² and neglect air resistance.

The initial vertical velocity of the pebble is zero.
Because the pebble hits the surface of the water after 1.5 s, therefore
h = (1/2)*(9.8 m/s²)*(1.5 s)² = 11.025 m

Answer:  11.025 m
7 0
2 years ago
Read 2 more answers
Other questions:
  • A ship maneuvers to within 2500 m of an island's 1800 m high mountain peak and fires a projectile at an enemy ship 610 m on the
    5·2 answers
  • The upper end of a 3.80-m-long steel wire is fastened to the ceiling, and a 54.0-kg object is suspended from the lower end of th
    14·1 answer
  • Debbie places two shopping carts in a cart Corral. she pushes the first cart, which then pushes a second cart. what force is bei
    9·1 answer
  • Heat engines were first envisioned and built during the industrial revolution. Explain the thermodynamics of a heat engine comme
    6·2 answers
  • Use scientific (exponential) notation to express the following quantities in terms of the SI base units in
    6·1 answer
  • A diode vacuum tube consists of a cathode and an anode spaced 5-mm apart. If 300 V are applied across the plates. What is the ve
    13·1 answer
  • A tank of water is in the shape of a cone (assume the ""point"" of the cone is pointing downwards) and is leaking water at a rat
    10·1 answer
  • Two loudspeakers emit sound waves along the x-axis. A listener in front of both speakers hears a maximum sound intensity when sp
    7·1 answer
  • The National High Magnetic Field Laboratory once held the world record for creating the strongest magnetic field. Their largest
    5·1 answer
  • What results when energy is transformed while juggling three bowling pins?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!