Answer:
The range is maximum when the angle of projection is 45 degree.
Explanation:
The formula for the horizontal range of the projectile is given by

The range should be maximum if the value of Sin2θ is maximum.
The maximum value of Sin2θ is 1.
It means 2θ = 90
θ = 45
Thus, the range is maximum when the angle of projection is 45 degree.
If the angle of projection is 0 degree
R = 0
It means the horizontal distance covered by the projectile is zero, it can move in vertical direction.
If the angle of projection is 30 degree.

R = 0.088u^2
If the angle of projection is 45 degree.

R = u^2 / g
Answer:
the order of importance must be b e a f c
Explanation:
Modern theories indicate that the moon was formed by the collision of a bad plant with the Earth during its initial cooling period, due to which part of the earth's material was volatilized and as a ring of remains that eventually consolidated in Moon.
Based on the aforementioned, let's analyze the statements in order of importance
b) True. Since the moon is material evaporated from Earth, its compassion is similar
e) True. If the moon is material volatilized from the earth it must train a finite receding speed
a) True. The solar system was full of small bodies in erratic orbits that wander between and with larger bodies
f) False. The moon's rotation and translation are equal has no relation to its formation phase
c) false. The amount of vaporized material on the moon is large
Therefore, the order of importance must be
b e a f c
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is

KE = kinetic energy
PE = potential energy
GPE = gravitational potential energy
energy is always measured in Joules (J)
KE = (0.5) times the mass times the velocity^2
square the velocity first
Mass = (KE x 2) / v^2
square the velocity first, then double the kinetic energy, then divide
mass is measured in kg
velocity = sqrt(KE x 2 / m)
velocity can be called speed, like in the the second problem
remember to find the square root after you double the KE and divide that by the mass.
for example: if after you doubled KE and divided it by the mass you got sqrt(20), the answer would be about 4.47
GPE = mass x gravitational pull (about 9.8 m/s^2 on earth) x height
height = (PE) / (g x m)
do g x m first
So for question 1:
KE = (0.5)0.1 x 1.1^2
always square the velocity first:
KE = (0.5)0.1 x 1.21
KE = 0.0605
so if you rounded it to the nearest hundreths you would get KE = 0.06 J
don't forget the unit of energy is in Joules