Answer:
6 hours 15 minutes
Explanation:
On the trip from L.A. to London, the plane travels at 750 mph against a headwind of 50 mph, and that makes the net 700 mph (in aviation speak, 750 is the airspeed, while 700 is the groundspeed). 5000 miles divided by 700 mph results in about 7.14 hours, or about 7 hours and 9 minutes. On the return trip, ASSUMING THE SAME WIND, the plane travels at 750 mph, but this time the wind of 50 mph is a tail wind. So the net (groundspeed) is 800 mph. Traveling 5000 miles at 800 mph only takes 6.25 hours, or 6 hours and 15 minutes.
Outbound flight 7 hours 9 minutes
Return flight 6 hours 15 minutes
To solve this problem, we must imagine that Jim’s initial
position, the position of the rock, and Jim’s final position all connects to
form a triangle. Now we can imagine that the triangle is a right triangle with
the 90° angle on the initial position.
The angle of 30° is directly opposite to the length of his
total stride while the width of the river is the side adjacent to the angle.
Therefore can use the tan function to solve for the width of the river:
tan θ = opposite side / adjacent side
tan 30 = total stride distance / width of river
where total stride distance = 65 * 0.8 = 52 m
width of river = 52 m / tan 30
<span>width of river = 90.07 m</span>
Answer:
The other angle is 30 degrees.
Explanation:
The range of projectile is given by :

Here,
u is the speed of launch of projectile
Here, 
We need to find the other launch angle when the projectile have the same range, such that,




So, the other angle is 30 degrees. Hence, this is the required solution.
Answer: a) angular acceleration, a = 5.24rad/s^2
b) time taken for the wheel to stop, ∆t = 0.30s
Explanation:
All shown in the attachment.
Answer:
The moon region
Explanation:
This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.