If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string.
If a single light in a parallel string fails, then only that one goes out.
The rest of the lights in the string continue to shimmer and glimmer.
If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
U = 0, initial vertical velocity
Neglect air resistance, and g = 9.8 m/s².
The time, t, required for the pen to attain a vertical velocity of 19.62 m/s is given by
19.62 m/s = 0 + (9.8 m/s²)*(t s)
t = 19.62/9.8 = 2.00 s
Answer: 2.0 s
Answer:
= 3289.8 m / s
Explanation:
This exercise can be solved using the definition of momentum
I = ∫ F dt
Let's replace and calculate
I = ∫ (at - bt²) dt
We integrate
I = a t² / 2 - b t³ / 3
We evaluate between the lower limits I=0 for t = 0 s and higher I=I for t = 2.74 ms
I = a (2,74² / 2- 0) - b (2,74³ / 3 -0)
I = a 3,754 - b 6,857
We substitute the values of a and b
I = 1500 3,754 - 20 6,857
I = 5,631 - 137.14
I = 5493.9 N s
Now let's use the relationship between momentum and momentum
I = Δp = m
- m v₀o
I = m
- 0
= I / m
= 5493.9 /1.67
= 3289.8 m / s
I think the correct answer from the choices listed above is the second option. Based on this information, we can say that there are more molecules in a gram of water since more energy is required to raise the temperature 1 gram of water than to raise the temperature of 1 gram of ethanol.
Answer:
X and Z
Explanation:
Conduction occurs through direct physical contact. Heat transferred from the pot to the handle, and from the handle to the hand, are both examples of conduction.