answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
g100num [7]
2 years ago
13

Assume your eye has an aperture diameter of 3.00 mm at night when bright headlights are pointed at it. 1) At what distance can y

ou see two headlights separated by 1.80 m as distinct? Assume a wavelength of 550 nm, near the middle of the visible spectrum. (Express your answer to two significant figures.)
Physics
2 answers:
Sauron [17]2 years ago
5 0

Answer:

8.1 x 10³ m

Explanation:

D = diameter of the aperture =3 mm = 0.003 m

x = distance between the two headlights = 1.80 m

λ = wavelength of the visible spectrum = 550 x 10⁻⁹ m

d = distance of the headlights from eyes = ?

Using Reyleigh's criterion,

\frac{x}{d}=\frac{1.22\lambda }{D}

\frac{1.80}{d}=\frac{1.22 (550\times 10^{-9}) }{0.003}

d = 8047.7 m

d = 8.1 x 10³ m

krek1111 [17]2 years ago
3 0

Answer:

The distance is 6259.31 meters.

Explanation:

We shall use the Reyligh criterion to solve the problem

For diffraction due to circular aperture we have

Assuming that human eye is circular we have

\frac{x}{D}=\frac{1.22\lambda }{d}

\therefore D=\frac{xd}{1.22\lambda }

Applying the given values we have

D=\frac{1.40\times 3\times 10^{-3}}{1.22\times 550\times 10^{-9}}\\\\\therefore D=6259.31m\\D=6.26km

You might be interested in
Give two ways of reversing the direction of the forces on the coil in the electric motor?​
nikklg [1K]

Answer:

Interchanging the poles of the magnet

Reversing the direction of the applied current

Explanation:

  1. The working of the electric motor is associated with Fleming's left-hand rule.
  2. It states that if a current-carrying conductor is placed inside a magnetic field, it experiences a force in the direction perpendicular to the direction of the electric current and magnetic field.
  3. These three physical quantities are placed in a mutually perpendicular direction.
  4. So, in order to reverse the direction of force, you have to either change the direction of the current or magnetic field.
4 0
2 years ago
Steam at 700 bar and 600 oC is withdrawn from a steam line and adiabatically expanded to 10 bar at a rate of 2 kg/min. What is t
Setler79 [48]

Answer:

Final temperature of the steam = 304.29 K = 31.14°C

Rate Entropy generation of the process should be 0 because no heat is transferred into or out of the system. And ΔS = Q/T = 0 J/K.

But 0.01 J/k.s was obtained though, which is approximately 0.

Explanation:

For an adiabatic system, the Pressure and temperature are related thus

P¹⁻ʸ Tʸ = constant

where γ = ratio of specific heats. For steam, γ = 1.33

P₁¹⁻ʸ T₁ʸ = P₂¹⁻ʸ T₂ʸ

P₁ = 700 bar

P₂ = 10 bar

T₁ = 600°C = 873.15 K

T₂ = ?

(700⁻⁰•³³)(873.15¹•³³) = (10⁻⁰•³³)(T₂¹•³³)

T₂ = 304.29 K = 31.14°C

b) Rate Entropy generation of the process should be 0 because no heat is transferred into or out of the system. And ΔS = Q/T

To prove this

Entropy of the process

dQ - dW = dU

dQ = dU + dW

dU = mCv dT

dW = PdV

dQ = TdS

TdS = mCv dT + PdV

dS = (mCv dT/T) + (PdV/T) =

PV = mRT; P/T = mR/V

dS = (mCv dT/T) + (mRdV/V)

On integrating, we obtain

ΔS = mCv In (T₂/T₁) + mR In (V₂/V₁)

To obtain V₁ and V₂, we use PV = mRT

V/m = specific volume

Pv = RT

R for steam = 461.52 J/kg.K

For V₁

P = 700 bar = 700 × 10⁵ Pa, T = 873.15 K

v₁ = (461.52 × 873.15)/(700 × 10⁵) = 0.00570 m³/kg

For V₂

P = 10 bar = 10 × 10⁵ Pa, T = 304.29 K

v₂ = (461.52 × 304.29)/(10 × 10⁵) = 0.143 m³/kg

ΔS = mCv In (T₂/T₁) + mR In (V₂/V₁)

m = 2 kg/min = 0.0333 kg/s, Cv = 1410.8 J/kg.K

ΔS = [0.03333 × 1410.8 × In (304.29/873.15)] + (0.03333 × 461.52 × In (0.143/0.00570)

ΔS = - 49.56 + 49.57 = 0.01 J/K.s ≈ 0 J/K.s

3 0
2 years ago
At a given point on a horizontal streamline in flowing air, the static pressure is â2.0 psi (i.e., a vacuum) and the velocity is
Nastasia [14]
At a point on the streamline, Bernoulli's equation is
p/ρ + v²/(2g) = constant
where
p = pressure
v = velocity
ρ = density of air, 0.075 lb/ft³ (standard conditions)
g = 32 ft/s²

Point 1:
p₁ = 2.0 lb/in² = 2*144 = 288 lb/ft²
v₁ = 150 ft/s

Point 2 (stagnation):
At the stagnation point, the velocity is zero.

The density remains constant.
Let p₂ = pressure at the stagnation point.
Then,
p₂ = ρ(p₁/ρ + v₁²/(2g))
p₂ = (288 lb/ft²) + [(0.075 lb/ft³)*(150 ft/s)²]/[2*(32 ft/s²)
     = 314.37 lb/ft²
     = 314.37/144 = 2.18 lb/in²

Answer: 2.2 psi

5 0
2 years ago
Carts A and B are identical and are moving toward each other on a track. The speed of cart A is v, while the speed of cart B is
borishaifa [10]

Answer: k= \frac{5mv^{2} }{2}

Explanation:

Recall that the formula for kinetic energy is given below as

k = \frac{mv^{2} }{2}

where k=kinetic energy (joules), m= mass of object (kg), v= velocity of object m/s)

For cart A

m_{a} = mass of cart A

v_{a} = v = velocity of cart A

K.E_{a} = kinetic energy of cart A

hence, K.E_{a} = \frac{m_{a}v^{2}  }{2}

For cart B

m_{b} = mass of cart B

v_{b} = 2v = velocity of cart B

K.E_{b} = kinetic energy of cart B

hence, K.E_{b} = \frac{m_{b}(2v^{2}) }{2} = 2m_{b} v^{2}

from the question, both cart are identical which implies they have the same mass i.e m_{a} = m_{b} = m which implies that

K.E_{a}= \frac{mv^{2} }{2} and K.E_{b}  =2mv^{2}

The total kinetic energy K is the sum of cart A and cart B kinetic energy

K=K.E_{a} + K.E_{b}

K=\frac{mv^{2} }{2} + 2mv^{2}

hence

K=\frac{5mv^{2} }{2}

6 0
2 years ago
A box slides down a frictionless plane inclined at an angle θ ¸ above the horizontal. The gravitational force on the box is dire
DedPeter [7]
<h2>Answer: at an angle \theta below the inclined plane. </h2>

If we draw the <u>Free Body Diagram</u> for this situation (figure attached), taking into account only the gravity force in this case, we will see the weight W of the block, which is directly proportional to the gravity acceleration g:  

W=m.g

This force is directed vertically at an angle \theta below the inclined plane, this means it has an X-component and a Y-component:

W=W_{X}+W_{Y}

W_{X}=m.g.cos(\theta)

W_{Y}=m.g.sin(\theta)

Therefore the correct option is c

6 0
2 years ago
Read 2 more answers
Other questions:
  • Which best describes what occurs when a body accelerates?
    6·1 answer
  • Exhaust outlets are often located in the area under a boat's swim platform. this area should be strictly off limits. what is the
    13·2 answers
  • Titanium metal requires a photon with a minimum energy of 6.94×10−19J to emit electrons. If titanium is irradiated with light of
    10·1 answer
  • A transformer is to be designed to increase the 30 kV-rms output of a generator to the transmission-line voltage of 345 kV-rms.
    8·1 answer
  • In a 1.25-T magnetic field directed vertically upward, a particle having a charge of magnitude 8.50μC and initially moving north
    12·1 answer
  • An object is attached to a hanging unstretched ideal and massless spring and slowly lowered to its equilibrium position, a dista
    14·1 answer
  • A 5 kg block moves with a constant speed of 10 ms to the right on a smooth surface where frictional forces are considered to be
    10·2 answers
  • A baton twirler has a baton of length 0.36 m with masses of 0.48 kg at each end. Assume the rod itself is massless. The rod is f
    15·1 answer
  • A team of engineering students is testing their newly designed 200 kg raft in the pool where the diving team practices. The raft
    11·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!