answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
2 years ago
6

A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he

r moment of inertia by two times. What is the skater's final angular speed
Physics
1 answer:
AURORKA [14]2 years ago
6 0

Answer:

The final angular speed of the skater is 12 radians per second.

Explanation:

Let consider the skater as a rotating system, given the absence of external forces, the Principle of Angular Momentum Conservation is applied:

I_{o}\cdot \omega_{o} = I_{f}\cdot \omega_{f}

Where:

I_{o}, I_{f} - Initial and final moment of inertia, measured in kg \cdot m^{2}.

\omega_{o}, \omega_{f} - Angular speed, measured in radians per second.

The final angular speed is cleared afterwards:

\omega_{f} = \frac{I_{o}}{I_{f}} \cdot \omega_{o}

Given that I_{f} = \frac{1}{2}\cdot I_{o} and \omega_{o} = 6\,\frac{rad}{s}, the final angular speed is:

\omega_{f} = \frac{I_{o}}{\frac{1}{2}\cdot I_{o} } \cdot \omega_{o}

\omega_{f} = 2 \cdot \omega_{o}

\omega_{f} = 2 \cdot \left(6\,\frac{rad}{s} \right)

\omega_{f} = 12\,\frac{rad}{s}

The final angular speed of the skater is 12 radians per second.

You might be interested in
Tyler stands at rest on a skateboard. He has a mass of 120 kg. His friend (m = 60 kg) jumps into his arms at a speed of 2 m/s. I
Andrews [41]
Momentum question. This is an inelastic collision, so 

m1v1+m2v2=Vf(m1+m2)
Vf=(m1v1+m2v2)/(m1+m2)=[(120kg)(0m/s)+(60kg)(2m/s)] / (120kg+60kg)
Vf=120kg m/s  /   180kg
Vf=0.67m/s

0.67m/s
5 0
2 years ago
Imagine that the above hoop is a tire. the coefficient of static friction between rubber and concrete is typically at least 0.9.
Stels [109]
The hoop is attached.

Consider that the friction force is given by:
F = μ·N
   = μ·m·g·cosθ

We also know, considering the forces of the whole system, that:
F = -m·a + m·g·sinθ
and
a = (1/2)·<span>g·sinθ

Therefore:
</span>-(1/2)·m·g·sinθ + m·g·sinθ = <span>μ·m·g·cosθ
</span>(1/2)·m·g·sinθ = <span>μ·m·g·cosθ
</span>μ = (1/2)·m·g·sinθ / <span>m·g·cosθ
   = </span>(1/2)·tanθ

Now, solve for θ:
θ = tan⁻¹(2·μ)
   = tan⁻¹(2·0.9)
   = 61°

Therefore, the maximum angle <span>you could ride down without worrying about skidding is 61°.</span>

5 0
2 years ago
The velocity of a 10.0 kg object that has 720 J of kinetic energy is m/s. (Report the answer to two significant figures.)
nikdorinn [45]
Kinetic energy<span> is the </span>energy<span> of motion. An object that has motion - whether it is vertical or horizontal motion - has </span>kinetic energy<span>. It is expressed as:

KE = mv^2 /2

720 = 10.0v^2 /2
v = 12 m/s

Hope this answers the question. Have a nice day.</span>
4 0
2 years ago
Read 2 more answers
Which of the following statements are true about an ideal solution of two volatile liquids? A. The partial pressure of each comp
Zanzabum

the correct choices are

A. The partial pressure of each component above the liquid is given by Raoult's law

and

C. An ideal solution of two volatile liquids can exist over a range of pressures that are limited by the pressure for which only a trace of liquid remains, and the pressure for which only a trace of gas remains

in ideal solution , when two volatile liquids are mixed no energy change takes place in the energy of the solution.


4 0
2 years ago
Read 2 more answers
Ben starts walking along a path at 3 3 mi/h. One and a half hours after Ben leaves, his sister Amanda begins jogging along the s
Drupady [299]

Answer:

3 hours

Explanation:

Given:

- The speed of Ben v_b = 3 mi/h

- The speed of Amanda v_a = 6 mi/h

- The total time taken to cover distance(d) by ben = t_b

Find:

How long will it be before Amanda catches up to Ben?

Solution:

- The distance d traveled by Ben:

                                 d = v_b*t_b

                                 d = 3*t_b

- The distance d traveled by Amanda:

                                 d = v_a*t_a

                                 d = 6*t_a

- Equate the distance as when they meet:

                                 3*t_b = 6*t_a

- Where ,

                                  t_b = t_a + 1.5

                                  t_a = t_b - 1.5

- Substitute the time relationship in distance relationship:

                                  3*t_b = 6*(t_b - 1.5)

                                  3*t_b = 6*1.5

                                      t_b = 2*1.5 = 3 h

- Hence, It would take 3 hours since Ben starts walking that amanda catches up.

4 0
2 years ago
Other questions:
  • HURRY UP PLZZZ Two identical waves are traveling toward each other in the same medium. One has a positive amplitude, meaning tha
    14·2 answers
  • Name three different avenues by which Thomas Edison received an education
    10·1 answer
  • Venn diagrams are used for comparing and contrasting topics. The overlapping sections show characteristics that the topics have
    15·2 answers
  • A tuning fork produces a sound with a frequency of 256 hz and a wavelength in air of 1.33 m. find the speed of sound in the vici
    6·1 answer
  • The automobile has a weight of 2700 lb and is traveling forward at 4 ft&gt;s when it crashes into the wall. If the impact occurs
    10·1 answer
  • A solid, uniform disk of mass M and radius a may be rotated about an axis parallel to the disk axis, at variable distances from
    7·1 answer
  • Two large blocks of wood are sliding toward each other on the frictionless surface of a frozen pond. Block A has mass 4.00 kg an
    7·1 answer
  • A rigid container equipped with a stirring device contains 1.5 kg of motor oil. Determine the rate of specific energy increase w
    8·1 answer
  • A particle is in uniform circular motion. Assume a standard rtz coordinate system. If you deconstruct the net force acting on th
    7·1 answer
  • An underground tunnel has two openings, with one opening a few meters higher than the other. If air moves past the higher openin
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!