answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
2 years ago
10

A professor's office door is 0.89 m wide, 2.0 m high, and 4.0 cm thick; has a mass of 25 kg ; and pivots on frictionless hinges.

A "door closer" is attached to the door and the top of the door frame. When the door is open and at rest, the door closer exerts a torque of 4.9 N⋅m . What is the least force that you need to apply to the door to hold it open?
Physics
1 answer:
taurus [48]2 years ago
7 0
In order to answer this question ... strange as it may seem ...
we only need one of those measurements that you gave us
that describe the door.

The door is hanging on frictionless hinges, and there's a torque
being applied to it that's trying to close it.  All we need to do is apply
an equal torque in the opposite direction, and the door doesn't move.

Obviously, in order for our force to have the most effect, we want
to hold the door at the outer edge, farthest from the hinges.  That
distance from the hinges is the width of the door ... 0.89 m.

We need to come up with 4.9 N-m of torque,
applied against the mechanical door-closer.

Torque is (force) x (distance from the hinge).

                                    4.9 N-m  =  (force) x (0.89 m) 

Divide each side by 0.89m:    Force = (4.9 N-m) / (0.89 m)

                                                             =  5.506 N .
You might be interested in
A celebrating student throws a water balloon horizontally from a dormitory window that is 50 m above the ground. It hits the gro
Contact [7]

Answer:

a) The horizontal velocity of the balloon just before it hits the ground is 6 m/s

b) The magnitude of the vertical velocity of the balloon just before it hits the ground is 98 m/s.

Explanation:

Hi there!

The velocity and position vectors of the water balloon are given by the following equations:

r =(x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

v =(v0x, v0y + g · t)

where:

r = position vector at time t.

x0 = initial horizontal position.

v0x = initial horizontal velocity.

t = time.

y0 = initial vertical position.

v0y = initial vertical position.

g = acceleration due to gravity (-9.8 m/s² considering the upward position as positive) .

v = velocity vector at time t.

a) Please, see the attached figure for a graphic description of the problem.

Considering the origin of the frame of reference as the point of launch, notice that the position vector when the balloon hits the ground is

r1 = (60, -50) m

Then:

r1x = 60 m = v0x · t

r1y = -50 m = 1/2 · (-9.8 m/s²) · t²

(notice that the initial vertical velocity is zero, see figure).

Solving r1y for t:

(-50 m · 2) / -9.8 m/s² = t²

t = 10 s

Now, let´s replace t in the r1x equation and solve it for the horizontal component of the velocity:

60 m = v0x · 10 s

v0x = 60 m / 10 s

v0x = 6 m/s

The initial horizontal component of the velocity is 6 m/s. This velocity is constant because there is no air resistance. Then, just before the balloon hits the ground, it will have a horizontal velocity of 6 m/s.

b) To calculate the vertical component of the velocity when the balloon hits the ground, let´s use the equation of the vertical component of the velocity:

v1y = v0y + g · t

Since v0y = 0

v1y = -9.8 m/s² · (10 s) = -98 m/s

The magnitude of the vertical velocity of the balloon when it hits the ground is 98 m/s.

4 0
2 years ago
Near the surface of the moon, the distance that an object falls is a function of time. It is given by d(t) = 2.6667t2, where t i
Eddi Din [679]

Answer:

averaage speed  is  v = 13 feet / s

Explanation:

 The average speed is the ratio of the distance traveled in a given time interval, let's calculate the distance that the body travels in the two instants of time that give us

   

 t = 1 s

       d (1) = 2.6667 1²

       d (1) = 2.6667 feet

 t = 4 s

       d (4) = 2.6667 4²

       d (4) = 42.6672 feet

Let's calculate the speed

       v = Δx / Δt

       v = (42.6672 -2.6667) / (4-1)

       v = 40/3

        v = 13.33335 feet / s

        v = 13 feet / s

6 0
2 years ago
A closed, rigid container holding 0.2 moles of a monatomic ideal gas is placed over a Bunsen burner and heated slowly, starting
Georgia [21]

Answer:

a) 2250 J

b) 0 J

c) 2250 J

Explanation:

a) Since, the process is isochoric

the change in internal energy

\Delta U = n C_v(T_f-T_i)

Here, n = 0.2 moles

Cv = 12.5 J/mole.K

We have to find T_f so we can use gas equation as

\frac{P_1V_1}{P_2V_2} =\frac{T_i}{T_f}\\Since, V_1=V_2    [isochoric/process]\\\Rightarrow \frac{P_{atm}}{4P_{atm}} = \frac{300}{T_f} \\\Rightarrow T_f = 1200 K

So,  \Delta U= 0.2\times12.5(1200-300)\\=2250 J

b) Since, the process is isochoric no work shall be done.

c) By first law of thermodynamics we have

\Delta U = Q-W\\Since, W = 0\\\Delta U = Q\\Therefore, Q = 2250 J

Since, Q is positive 2250 J of heat will flow into the system.

6 0
2 years ago
The weight of Earth's atmosphere exerts an average pressure of 1.01 ✕ 105 Pa on the ground at sea level. Use the definition of p
zloy xaker [14]

Answer:

The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

Explanation:

Given that,

Average pressure P=1.01\times10^{5}\ Pa

Radius of earth R_{E}=6.38\times10^{6}\ m

Pressure :

Pressure is equal to the force upon area.

We need to calculate the weight of earth's atmosphere

Using formula of pressure

P=\dfrac{F}{A}  

F=PA

F=P\times 4\pi\times R_{E}^2

Where, P = pressure

A = area

Put the value into the formula

F=1.01\times10^{5}\times4\times\pi\times(6.38\times10^{6})^2

F=516.6\times10^{17}\ N

Hence, The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

8 0
2 years ago
Read 2 more answers
In the metric system, the appropriate unit for weight is the _____. gram newton newton/cm2 gram/cm3
Archy [21]

Answer:

Newton

Explanation:

The earth attracts every body towards its centre. The force with which the earth attracts any body towards its centre, is called its weight.

It is a vector quantity.

It always acts towards the centre of earth.

The SI unit of Newton.

4 0
2 years ago
Other questions:
  • At what condition does a body become weightless at the equator?
    8·1 answer
  • Why did the acorn fall to earth instead of rising up to the moon?
    8·2 answers
  • The electric field near the earth's surface has magnitude of about 150n/c. what is the acceleration experienced by an electron n
    5·1 answer
  • The diagram shows the electric field around two charged objects. What is the best conclusion about the charges that can be made
    14·2 answers
  • A hockey goalie is standing on ice. Another player fires a puck (m = 0.170 kg) at the goalie with a velocity of +44.6 m/s. (a) I
    7·1 answer
  • Janelle stands on a balcony, two stories above Michael. She throws one ball straight up and one ball straight down, but both wit
    15·1 answer
  • The eyes of many older people have lost the ability to accommodate, and so an older person’s near point may be more than 25 cm f
    12·1 answer
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • . A magnetic field has a magnitude of 0.078 T and is uniform over a circular surface whose radius is 0.10 m. The field is orient
    15·1 answer
  • Calculate the orbital period of a dwarf planet found to have a semimajor axis of a = 4.0x 10^12 meters in seconds and years.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!