answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
2 years ago
10

The weight of Earth's atmosphere exerts an average pressure of 1.01 ✕ 105 Pa on the ground at sea level. Use the definition of p

ressure to estimate the weight of Earth's atmosphere (in N) by approximating Earth as a sphere of radius RE = 6.38 ✕ 106 m and surface area A = 4πRE2. HINT N
Physics
2 answers:
zloy xaker [14]2 years ago
8 0

Answer:

The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

Explanation:

Given that,

Average pressure P=1.01\times10^{5}\ Pa

Radius of earth R_{E}=6.38\times10^{6}\ m

Pressure :

Pressure is equal to the force upon area.

We need to calculate the weight of earth's atmosphere

Using formula of pressure

P=\dfrac{F}{A}  

F=PA

F=P\times 4\pi\times R_{E}^2

Where, P = pressure

A = area

Put the value into the formula

F=1.01\times10^{5}\times4\times\pi\times(6.38\times10^{6})^2

F=516.6\times10^{17}\ N

Hence, The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

pav-90 [236]2 years ago
8 0

Answer:

5.164 x 10^19 N

Explanation:

P = 1.01 x 10^5 Pa

R = 6.38 x 10^6 m

Area = 4 π R²

A= 4\times 3.14\times6.38\times10^{6}\times6.38\times10^{6}

A = 5.112 x 10^14 m^2

Pressure is defined as the force exerted per unit area.

The formula for the pressure is

P = F / A

Where, F is the force, A be the area

here force is the weight of atmosphere.

F = P x A  

F = 1.01 x 10^5 x 5.112 x 10^14

F = 5.164 x 10^19 N

You might be interested in
) What is the electric potential due to the nucleus of hydrogen at a distance of 7.50× 10-11 m? Assume the potential is equal to
ohaa [14]
For this, we need the formula:
V = k q / r
where k is the Coulombs law constant = 9 x 10^9 N
q is the charge of the hydrogen nucleus (proton) = <span>1.6 x 10^-19 C</span> 
r is the distance
Simply plug in the values and solve for V
5 0
2 years ago
Read 2 more answers
A 1.00-kilogram ball is dropped from the top of a building. just before striking the ground, the ball's speed is 12.0 meters per
Anarel [89]
During the fall, the potential energy stored in the ball is converted into kinetic energy.
Thus,
PE = KE before hitting the ground
= 1/2 • mv^2
= 1/2 • 1 • 12^2
= 72J
6 0
2 years ago
Cassy shoots a large marble (Marble A, mass: 0.06 kg) at a smaller marble (Marble B, mass: 0.03 kg) that is sitting still. Marbl
Lostsunrise [7]
Conservation of linear momentum:

m*v inital = m*v final

0.06*0.7 + 0.03*0 = 0.06*(-0.2) + 0.03*v

(my algebra, or use ur calculator: 0.06*.07=0.042, etc ... or ur teacher may think you got some help)

0.06*(0.7+0.2)=0.03*v, v = 0.06*0.9/0.03=1.8 m/s

Answer 1.8 m/s (positive, to the right).

 

4 0
2 years ago
A figure skater rotating at 5.00 rad/s with arms extended has a moment of inertia of 2.25 kg·m2. If the arms are pulled in so t
Serggg [28]

a) 6.25 rad/s

The law of conservation of angular momentum states that the angular momentum must be conserved.

The angular momentum is given by:

L=I\omega

where

I is the moment of inertia

\omega is the angular speed

Since the angular momentum must be conserved, we can write

L_1 = L_2\\I_1 \omega_1 = I_2 \omega_2

where we have

I_1 = 2.25 kg m^2 is the initial moment of inertia

\omega_1 = 5.00 rad/s is the initial angular speed

I_2 = 2.25 kg m^2 is the final moment of inertia

\omega_2 is the final angular speed

Solving for \omega_2, we find

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(2.25 kg m^2)(5.00 rad/s)}{1.80 kg m^2}=6.25 rad/s

b) 28.1 J and 35.2 J

The rotational kinetic energy is given by

K=\frac{1}{2}I\omega^2

where

I is the moment of inertia

\omega is the angular speed

Applying the formula, we have:

- Initial kinetic energy:

K=\frac{1}{2}(2.25 kg m^2)(5.00 rad/s)^2=28.1 J

- Final kinetic energy:

K=\frac{1}{2}(1.80 kg m^2)(6.25 rad/s)^2=35.2 J

7 0
2 years ago
In a supermarket, you place a 22.3-N (around 5 lb) bag of oranges on a scale, and the scale starts to oscillate at 2.7 Hz. What
allsm [11]

Answer:

Force constant, k = 653.3 N/m

Explanation:

It is given that,

Weight of the bag of oranges on a scale, W = 22.3 N

Let m is the mass of the bag of oranges,

m=\dfrac{W}{g}

m=\dfrac{22.3}{9.8}

m = 2.27 kg

Frequency of the oscillation of the scale, f = 2.7 Hz

We need to find the force constant (spring constant) of the spring of the scale. We know that the formula of the frequency of oscillation of the spring is given by :

f=\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}}

k=4\pi^2 f^2m

k=4\pi^2 \times (2.7)^2\times 2.27

k = 653.3 N/m

So, the force constant of the spring of the scale is 653.3 N/m. Hence, this is the required solution.

7 0
2 years ago
Other questions:
  • Which radioactive isotope would take the least amount of time to become stable? rubidium-91 iodine-131 cesium-135 uranium-238
    5·2 answers
  • According to the diagram, in order for a solar eclipse to occur, the Earth, Moon, and Sun must A) form a right angle with the Mo
    8·1 answer
  • A floating ice block is pushed through a displacement d = (14 m) i hat - (11 m) j along a straight embankment by rushing water,
    15·1 answer
  • Given three different locations on Earth's surface, where will the weight of a person be greatest? in New York City, which is ab
    13·1 answer
  • Calculate the partial pressure of ozone at 441 ppb if the atmospheric pressure is 0.67 atm.
    6·1 answer
  • A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
    15·2 answers
  • Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
    15·1 answer
  • The speed of sound in air is 320 ms-1 and in water it is 1600 ms-1. It takes 2.5 s for sound to reach a certain distance from th
    7·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    6·1 answer
  • Consider a steel tape measure with cross-sectional area, A = 0.0625 inches squared, and length L = 3, 600 inches at room tempera
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!