Answer:
1.024 × 10⁸ m
Explanation:
The velocity v₀ of the orbit 8RE is v₀ = 8REω where ω = angular speed.
So, ω = v₀/8RE
For the orbit with radius R for it to maintain a circular orbit and velocity 2v₀, we have
2v₀ = Rω
substituting ω = v₀/8RE into the equation, we have
2v₀ = v₀R/8RE
dividing both sides by v₀, we have
2v₀/v₀ = R/8RE
2 = R/8RE
So, R = 2 × 8RE
R = 16RE
substituting RE = 6.4 × 10⁶ m
R = 16RE
= 16 × 6.4 × 10⁶ m
= 102.4 × 10⁶ m
= 1.024 × 10⁸ m
Answer:B
Explanation:
Given
Distance of astronaut From asteroid x is 
Distance of astronaut From asteroid Y is 
Suppose M,M_x,M_y be the masses of Astronaut , asteroid X and Y
If the astronaut is in equilibrium then net gravitational force on it is zero


cancel out the common terms we get




Answer:
Explanation:
The magnetic field due to straight wire is into the square coil.
As the current in straight wire decreases the magnetic flux in the coil decreases
. The induced magnetic field is into the coil.The induced current is along +y direction
Answer:
The amount of heat required is 
Explanation:
From the question we are told that
The mass of water is 
The temperature of the water before drinking is 
The temperature of the body is 
Generally the amount of heat required to move the water from its former temperature to the body temperature is

Here
is the specific heat of water with value
So

=>
Generally the no of mole of sweat present mass of water is

Here
is the molar mass of sweat with value
=> 
=> 
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

Here
is the latent heat of vaporization with value 
=> 
=> 
Generally the overall amount of heat energy required is

=> 
=> 
Answer:4.05 s
Explanation:
Given
First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s
Both hit the ground at the same time
Let h be the height of cliff and it reaches after time t

For second stone
---2
Equating 1 &2 we get




