Answer:
a) amount of kinetic energy converted to internal energy = 2.5 x 10 raised to power 7 Joule
b) Kinetic energy gained by the earth = 2.1 x 10-16J
c) All the kinetic energy is converted to internal energy and the energy is further converted to thermal energy hence the reason for the hotness at around where the meteorite strikes.
Explanation:
The detailed steps and appropriate application of the law of conservation of momentum is as shown in the attached file.
Answer:
Speed of 1.83 m/s and 6.83 m/s
Explanation:
From the principle of conservation of momentum
where m is the mass,
is the initial speed before impact,
and
are velocity of the impacting object after collision and velocity after impact of the originally constant object
Therefore
After collision, kinetic energy doubles hence
Substituting 5 m/s for
then
Also, it’s known that
hence
Solving the equation using quadratic formula where a=2, b=-10 and c=-25 then
Substituting,
Therefore, the blocks move at a speed of 1.83 m/s and 6.83 m/s
156.8 Joules of energy is in the box's gravitational potential energy store
<u>Explanation</u>:
<em>Given:</em>
Mass of the box Dane is holding = 8 Kilograms
Height at which Dane is holding the box above the ground= 2 metres
<em>To Find:</em>
Gravitational potential energy in the box=?
<em>Solution:</em>
gravitational potential energy is the work done per mass on a object to move that object from one fixed location to to another location against gravity.Its unit is joules or J
Thus Gravitational potential energy is represented as,

where
is the gravitational potential energy
m is the mass
h is the height
g is the gravitational force( 9.8
)
Now substituting the given values,


Answer: -2.5
Explanation:
1/2(-5)= -2.5
-2.5(1)= -2.5
Got it right in Khan Academy. You’re welcome.
<span>Despite the Quantum Mechanical Model treating the electron mathematically as a wave rather than fixed patterns, the Quantum Mechanical model best illustrates the Bohr model because both models of the atom assign specific energies to an electron.</span>