Answer:
The resistance of the axon is
.
Explanation:
Given that,
Inner diameter of the model of an axon, 
Radius of the model, 
Resistivity of the fluid inside the tube wall, 
Length of the axon, l = 2 mm = 0.002 m
We know that the resistance in terms of resistivity of an object is given by :

So, the resistance of the axon is
. Hence, this is the required solution.
Complete Question
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).
Answer:
The pressure at the brain is 
Explanation:
Generally is mathematically denoted as

Substituting
for
(the density) ,
for g (acceleration due to gravity) , 0.4m for h (the height )
We have that the pressure difference between the heart and the brain is

But the pressure of blood at the heart is given as

Now the pressure at the brain is mathematically evaluated as



Answer:
The speed is 173 m/s.
Explanation:
Given that,
A = 47
B = 14
Length 1 urk = 58.0 m
An hour is divided into 125 time units named dorts.
3600 s = 125 dots
dorts = 28.8 s
Speed v= (25.0+A+B) urks/dort
We need to convert the speed into meters per second
Put the value of A and B into the speed




Hence, The speed is 173 m/s.
Answer:
The answer is A. There is no electric field on the interior of the conducting sphere.
Explanation:
A solid conducting sphere in a uniform electric field will exert force on the charges in the sphere to redistribute themselves in such a way that both the charges and the field inside the sphere would vanish.
<h2>5.3 km</h2>
Explanation:
This question involves continuous displacement in various directions. When it becomes difficult to imagine, vector analysis becomes handy.
Let us denote each of the individual displacements by a vector. Consider the unit vectors
as the unit vectors in the direction of East and North respectively.
By simple calculations, we can derive the unit vectors
in the directions North,
South of West and
North of West respectively.
So Total displacement vector = Sum of individual displacement vectors.
Displacement vector = 
Magnitude of Displacement = 
∴ Total displacement = 