Ok the velocity of an object in free fall is given by the equation :
v=v0-gt, where v0 is the original velocity, g is the gravitational constant (9.8 m/s^2) and t is the time.
so, we substitute values into this equation. v=35.8-9.8*2.5; v=11.3 m/s
Answer:
man upward acceleration is 0.14m/s^2
Explanation:
given data:
mass of man = 72 kg
downward force = 360 N
The mass of man of weight 72 kg is hang from two sections of rope, one section pf rope ties around man waist and other section is ties in man hands. when he pulls down the rope with 360 N force then each section of rope pulls with 360 N
we know that
Weight= mass × gravity= 72kg × 9.8 = 705.6N
Force = mass× acceleration
Force= -705.6 + (2 × 358) = 10.4 N

Answer:
5.1*10^3 J/m^3
Explanation:
Using E = q/A*eo
And
q =75*10^-6 C
A = 0.25
eo = 8.85*10^-12
Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]
= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]
= 5.1*10^3 J/m^3
Answer:
Force plane exert on pilot = 4270 N
Explanation:
first convert radius and speed to ms
using formula from force we know that
mass = weight/ gravity = 700 N/ 9.8N/kg= 71.4 kg
Fc= N-mg
N= Fc+ mg As Fc = mv²/R
N= mv²/R + mg
taking m common
N= m( v²/R +g)
= 71.4( (200)²/ 800 + 9.8 )
Force = 4270 N