-3 m/s
---------
per min
oh I think 8m/s to 3m/s to 0m/s
idk probably -0.08
Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Given that,
Radius of track, r = 50 m
time , t = 9 s
velocity, v = ?
Distance covered by car in one lap around a track is equal to the circumference of the track.
C = 2 π r = 2 * 3.14 * 50
C = 314.159 m
Distance covered by car, s = 314.159 m
Velocity = distance/ time
V = 314.159 / 9
V = 34.9 m/s
The average velocity of car is 34.9 m/s.
Answer:
88.3
Explanation:
Emf in a rotating coil is given by rate of change of flux:
E= dФ/dt=(NABcos∅)/ dt
N: number of turns in the coil= 80
A: area of the coil= 0.25×0.40= 0.1
B: magnetic field strength= 1.1
Ф: angle of rotation= 90- 37= 53
dt= 0.06s
E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V
Answer:
So the acceleration of the child will be 
Explanation:
We have given angular speed of the child 
Radius r = 4.65 m
Angular acceleration 
We know that linear velocity is given by 
We know that radial acceleration is given by 
Tangential acceleration is given by

So total acceleration will be 