Solution :
Mass of the particle = M
Speed of travel = v
Energy of one photon after the decay which moves in the positive x direction = 233 MeV
Energy of second photon after the decay which moves in the negative x direction = 21 MeV
Therefore, the total energy after the decay is = 233 + 21
= 254 MeV
So by the law of conservation of energy, we have :
Total energy before the decay = total energy after decay
So, the total relativistic energy of the particle before its decay = 254 MeV
Answer: C
Explanation:
The acceleration does not depend directly on the mass of the object.
Newton's Law is Force = Mass x Acceleration.
Therefore, Acceleration = Force/Mass
The same force is applied in both cases.
Therefore acceleration is inversely proportional to mass.
As mass decreases, acceleration increases.
Answer: Car brakes produces more energy then the bicycle because the cars wheels produces a much bigger force that makes the car go and to stop that force the car uses greater amount of energy that transfers to heat but in a bicycle the wheels do not turn that fast so when you press the break there is less energy that transfer to heat.
Explanation:
We use the equation of motion,

Here, S is the height, u is initial velocity and a is acceleration.
Given,
As acorn falls from tree, therefore we take the value of
and initial velocity
.
Substituting these values in equation of motion,

Thus, the time taken by the acorn to fall 20 feet ( 6.096 m ) is 1.12 s.
The answer would be . Since we are looking for the spring constant you would need to use the formula

. Then you'd substitute, for PEs and x.

Then solve. k=500n/m