answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
2 years ago
13

A hot air balloon of total mass M (including passengers and luggage) is moving with a downward acceleration of magnitude a. As i

t approaches a mountain, the captain needs to accelerate upwards. He decides to throw enough ballast over board to achieve an upward acceleration of magnitude a/2. What fraction of the initial mass does he have to drop? Assume the upward lift force exerted by the air on the balloon does not change because of the decrease in mass.
Physics
1 answer:
LUCKY_DIMON [66]2 years ago
5 0

Answer:

The fraction of mass that was thrown out is calculated by the following Formula:

M - m = (3a/2)/(g²- (a²/2) - (ag/2))

Explanation:

We know that Force on a moving object is equal to the product of its mass and acceleration given as:

F = ma

And there is gravitational force always acting on an object in the downward direction which is equal to g = 9.8 ms⁻²

Here as a convention we will use positive sign with acceleration to represent downward acceleration and negative sign with acceleration represent upward acceleration.

Case 1:

Hot balloon of mass = M

acceleration = a

Upward force due to hot air = F = constant

Gravitational force downwards = Mg

Net force on balloon is given as:

Ma = Gravitational force - Upward Force                              

Ma = Mg - F                      (balloon is moving downwards so Mg > F)

F = Mg - Ma

F = M (g-a)

M = F/(g-a)

Case 2:

After the ballast has thrown out,the new mass is m. The new acceleration is -a/2 in the upward direction:

Net Force is given as:

-m(a/2) = mg - F        (Balloon is moving upwards so F > mg)

F = mg + m(a/2)

F = m(g + (a/2))

m = F/(g + (a/2))

Calculating the fraction of the initial mass dropped:

M-m = \frac{F}{g-a} - \frac{F}{g+\frac{a}{2} }\\M-m = F*[\frac{1}{g-a} - \frac{1}{g+\frac{a}{2} }]\\M-m = F*[\frac{(g+(a/2)) - (g-a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{g+(a/2) - g + a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{(3a/2)}{g^{2}-\frac{a^{2}}{2}-\frac{ag}{2}} ]

You might be interested in
Hoosier Manufacturing operates a production shop that is designed to have the lowest unit production cost at an output rate of 1
abruzzese [7]

Answer:

90.77%

its capacity utilization rate for the month is 90.77%

Explanation:

The capacity utilisation rate can be expressed mathematically as;

Capacity utilisation rate = capacity used/Best operating level × 100%

Given;

Total Number of production time = 205hours

Production output/capacity used = 21400 units

Best operation rate = 115units/hour

Best operation output for the month of July( at best operation level )

=115units/hour × 205 hours = 23575 units

Capacity utilisation rate = 21400/23575 × 100%

= 90.77%

3 0
2 years ago
Determine the change in thermal energy of 100 g of copper (M = 63,5, Debye 348K) if it is cooled from
Setler [38]

Answer:

given,

mass of copper = 100 g

latent heat of liquid (He) = 2700 J/l

a) change in energy

Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (300 - 4)

Q = 11153.63 J

He required

Q = m L

11153.63 = m × 2700

m = 4.13 kg

b) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (78 - 4)

Q = 2788.41 J

He required

Q = m L

2788.41 = m × 2700

m = 1.033 kg

c) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (20 - 4)

Q = 602.90 J

He required

Q = m L

602.9 = m × 2700

m =0.23 kg

8 0
2 years ago
1. A student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.
Snezhnost [94]

Explanation:

(a) Displacement of an object is the shortest path covered by it.

In this problem, a student is biking to school. She travels 0.7 km north, then realizes something has fallen out of her bag.  She travels 0.3 km south to retrieve her item. She then travels 0.4 mi north to arrive at school.

0.4 miles = 0.64 km

displacement = 0.7-0.3+0.64 = 1.04 km

(b) Average velocity = total displacement/total time

t = 15 min = 0.25 hour

v=\dfrac{1.04\ km}{0.25\ h}\\\\v=4.16\ km/h

Hence, this is the required solution.

8 0
2 years ago
An elevator has a weight of 14,700 N and has an acceleration of –0.30 m/s2. The free-body diagram shows the forces acting on the
qwelly [4]

14250. I just took it

4 0
2 years ago
Read 2 more answers
The graph below shows the relationship between speed and time for two objects, A and B. Compare with the acceleration of object
kolbaska11 [484]

Answer:

A) greater

Explanation:

acceleration is calculated by dividing velocity over time..so by calculating, you find acceleration of A is greater than that of B

5 0
2 years ago
Read 2 more answers
Other questions:
  • A cement factory emits 900 kilograms of CO2 to produce 1,000 kilograms of cement. A fully grown tree removes six kilograms of CO
    13·2 answers
  • Astronomers have discovered several volcanoes on io, a moon of jupiter. one of them, named loki, ejects lava to a maximum height
    13·1 answer
  • During summer break, Jamie's family went camping in the mountains. There were no roads to their camp, 8 miles away, and it took
    5·2 answers
  • Why do meteors in a meteor shower appear to come from just one point in the sky?
    9·1 answer
  • The angle between the axes of two polarizing filters is 45.0^\circ45.0 ​∘ ​​ . By how much does the second filter reduce the int
    10·1 answer
  • A 32-kg child decides to make a raft out of empty 1.0-L soda bottles and duct tape. Neglecting the mass of the duct tape and pla
    15·1 answer
  • Visualize five horizontal sedimentary strata exposed in a cliff or canyon wall identified by consecutive numbers, 1 being the lo
    9·2 answers
  • A resistor with resistance R and an air-gap capacitor of capacitance C are connected in series to a battery (whose strength is "
    13·1 answer
  • A radiator rests snugly on the floor of a room when the temperature is 10 oC. The radiator is connected to the furnace in the ba
    7·1 answer
  • Calculate the orbital period of a dwarf planet found to have a semimajor axis of a = 4.0x 10^12 meters in seconds and years.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!