answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaK [193]
2 years ago
13

A hot air balloon of total mass M (including passengers and luggage) is moving with a downward acceleration of magnitude a. As i

t approaches a mountain, the captain needs to accelerate upwards. He decides to throw enough ballast over board to achieve an upward acceleration of magnitude a/2. What fraction of the initial mass does he have to drop? Assume the upward lift force exerted by the air on the balloon does not change because of the decrease in mass.
Physics
1 answer:
LUCKY_DIMON [66]2 years ago
5 0

Answer:

The fraction of mass that was thrown out is calculated by the following Formula:

M - m = (3a/2)/(g²- (a²/2) - (ag/2))

Explanation:

We know that Force on a moving object is equal to the product of its mass and acceleration given as:

F = ma

And there is gravitational force always acting on an object in the downward direction which is equal to g = 9.8 ms⁻²

Here as a convention we will use positive sign with acceleration to represent downward acceleration and negative sign with acceleration represent upward acceleration.

Case 1:

Hot balloon of mass = M

acceleration = a

Upward force due to hot air = F = constant

Gravitational force downwards = Mg

Net force on balloon is given as:

Ma = Gravitational force - Upward Force                              

Ma = Mg - F                      (balloon is moving downwards so Mg > F)

F = Mg - Ma

F = M (g-a)

M = F/(g-a)

Case 2:

After the ballast has thrown out,the new mass is m. The new acceleration is -a/2 in the upward direction:

Net Force is given as:

-m(a/2) = mg - F        (Balloon is moving upwards so F > mg)

F = mg + m(a/2)

F = m(g + (a/2))

m = F/(g + (a/2))

Calculating the fraction of the initial mass dropped:

M-m = \frac{F}{g-a} - \frac{F}{g+\frac{a}{2} }\\M-m = F*[\frac{1}{g-a} - \frac{1}{g+\frac{a}{2} }]\\M-m = F*[\frac{(g+(a/2)) - (g-a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{g+(a/2) - g + a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{(3a/2)}{g^{2}-\frac{a^{2}}{2}-\frac{ag}{2}} ]

You might be interested in
Give two ways of reversing the direction of the forces on the coil in the electric motor?​
nikklg [1K]

Answer:

Interchanging the poles of the magnet

Reversing the direction of the applied current

Explanation:

  1. The working of the electric motor is associated with Fleming's left-hand rule.
  2. It states that if a current-carrying conductor is placed inside a magnetic field, it experiences a force in the direction perpendicular to the direction of the electric current and magnetic field.
  3. These three physical quantities are placed in a mutually perpendicular direction.
  4. So, in order to reverse the direction of force, you have to either change the direction of the current or magnetic field.
4 0
2 years ago
Before leaving the house in the morning, you plop some stew in your slow cooker and turn it on Low. The slow cooker has a 160 Oh
guajiro [1.7K]

Answer:

Total charge flow through the cooker is 21600 C

Explanation:

As we know that the current flow through the cooker is given by Ohm's law

here it is given as

V = i R

i = \frac{V}{R}

i = \frac{120}{160}

i = \frac{3}{4} A

now the charge flow through it is given as

Q = i t

total time is t = 8 hours

Q = \frac{3}{4}(8 \times 60 \times 60)

Q = 21600 C

7 0
2 years ago
A starship passes Earth at 80% of the speed of light and sends a drone ship forward at half the speed of light rela- tive to its
alisha [4.7K]

Answer:

Check Explanation

Explanation:

Let the speed of the drone relative to earth be u = ?

Let the speed of the drone relative to the starship be u' = 0.5c

Let the speed of the starship relative to earth be v = 0.8c

In the theory of relativity,

The 3 speeds are related thus

u = (u' + v)/[1 + (u'v/c²)]

u = (0.5c + 0.8c)[1 + ((0.8c × 0.5c)/c²)]

u = 1.3c/[1 + (0.4c²/c²)]

u = 1.3c/1.4 = 0.9286 c = 0.93 c = 93% c

8 0
2 years ago
A conducting rod (length = 80 cm) rotates at a constant angular rate of 15 revolutions per second about a pivot at one end. A un
Studentka2010 [4]

Answer:

3.62 V

Explanation:

L = 80 cm = 0.8 m

f = 15 rps

B = 60 m T = 0.060 T

ω = 2 x π x f = 2 x 3.14 x 15 = 94.2 rad/s

v = r ω

here, r be the radius of circular path. Here r = length of rod = L

v = 0.80 x 94.2 = 75.36 m/s

The motional emf is given by

e = B  v  L = 0.060 x 75.36 x 0.8 = 3.62 V

4 0
2 years ago
In ideal flow, a liquid of density 850 kg/m3 moves from a horizontal tube of radius 1.00 cm into a second horizontal tube of rad
Crank

Answer:

a)   Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1] , b) Q = 3.4 10⁻² m³ / s , c)      Q = 4.8 10⁻² m³ / s

Explanation:

We can solve this fluid problem with Bernoulli's equation.

         P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

With the two tubes they are at the same height y₁ = y₂

        P₁-P₂ = ½ ρ (v₂² - v₁²)

The flow rate is given by

         A₁ v₁ = A₂ v₂

         v₂ = v₁ A₁ / A₂

We replace

         ΔP = ½ ρ [(v₁ A₁ / A₂)² - v₁²]

         ΔP = ½ ρ v₁² [(A₁ / A₂)² -1]

Let's clear the speed

         v₁ = √ 2ΔP /ρ[(A₁ / A₂)² -1]

The expression for the flow is

           Q = A v

           Q = A₁ v₁

           Q = A₁ √ 2ΔP / rho [(A₁ / A₂)² -1]

The areas are

            A₁ = π r₁

            A₂ = π r₂

We replace

        Q = π r₁ √ 2ΔP / rho [r₁² / r₂² -1]

Let's calculate for the different pressures

      r₁ = d₁ / 2 = 1.00 / 2

      r₁ = 0.500 10⁻² m

      r₂ = 0.250 10⁻² m

b) ΔP = 6.00 kPa = 6 10³ Pa

      Q = π 0.5 10⁻² √(2 6.00 10³ / (850 (0.5² / 0.25² -1))

       Q = 1.57 10⁻² √(12 10³/2550)

        Q = 3.4 10⁻² m³ / s

c) ΔP = 12 10³ Pa

        Q = 1.57 10⁻² √(2 12 10³ / (850 3)

         Q = 4.8 10⁻² m³ / s

5 0
2 years ago
Other questions:
  • Which changes of state are characterized by having atoms that gain energy? Check all that apply
    15·2 answers
  • A charge q moves from point A to point B in an electric field. The potential energy of the charge at point A is 9.4 × 10-13 joul
    15·2 answers
  • The image shows positions of the earth and the moon in which region would an astronaut feel the lightest
    10·2 answers
  • New York and Los Angeles are about 3000 mi apart, the time difference between these two cities is 3 h. Calculate the circumferen
    15·1 answer
  • A typical jet airliner has a cruise airspeed of 900 km/h , which is its speed relative to the air through which it is flying. If
    9·1 answer
  • A calorimeter has a heat capacity of 1265 J/oC. A reaction causes the temperature of the calorimeter to change from 22.34oC to 2
    14·2 answers
  • The platform height for Olympic divers is 10 m. A 60 kg diver steps off the platform to begin his dive.
    5·1 answer
  • What two quantities are crucial to quantifying the translational kinetic energy of an object?
    12·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
  • One of the Lady Spartans was falling to the ground after
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!