Answer:
The correct dose = 1454.54 mg
and The jnfusion rate = 41.67 gitt/hr
Explanation: the correct dose will be 50mg/kg × kg/2.2 × 64lb
= 1454.54 mg
infusion rate will be
10 gtts/ml × 50mg/6 × 30/60
Infusion rate = 15000/360
= 41.67 gitt/hr
Answer:
for this problem, 2.5 = (5+2/2)-(5-2/2)erf (50×10-6m/2Dt)
It now becomes necessary to compute the diffusion coefficient at 750°C (1023 K) given that D0= 8.5 ×10-5m2/s and Qd= 202,100 J/mol.
we have D= D0exp( -Qd/RT)
=(8.5×105m2/s)exp(-202,100/8.31×1023)
= 4.03 ×10-15m2/s
Answer:
The speed of the cart after 8 seconds of Low fan speed is 72.0 cm/s
The speed of the cart after 3 seconds of Medium fan speed is 36.0 cm/s
The speed of the cart after 6 seconds of High fan speed is 96.0 cm/s
Explanation:
took the test on edgenuity
Answer:
20 rad/s
Explanation:
mass, m = 12 kg
radius, r = 0.250 m
Moment of inertia of cylinder, I = 1/2 mr²
I = 0.5 x 12 x 0.250 x 0.250 = 0.375 kgm^2
Work done = Change in kinetic energy
Initial K = 0
Final K = 1/2 Iω²
W = 1/2 Iω²
ω² = 2W/ I = 2 x 75 / (0.375)
ω = 20 rad/s
Thus, the final angular velocity is 20 rad/s .
Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity