Answer:
dont you have to times it
Explanation:
D = V0t + 0.5at^2
Where d is the distance
V0 is the initial velocity
A is the acceleration
T is time
From the graph a = 4/3 m/s2
D = 0(3) + 0.5( 4/3 m/s2) ( 3 s)^2
D = 6 m
The answer for this problem is clarified through this, the
system is absorbing (+). And now see that it uses that the SURROUNDINGS are
doing 84 KJ of work. Any time a system is overshadowing work done on it by the
surroundings the sign will be +. So it's just 12.4 KJ + 4.2 = 16.6 KJ.
Answer:
d. at the same velocity
Explanation:
I will assume the car is also travelling westward because it was stated that the helicopter was moving above the car. In that case, it depends where the observer is. If the observer is in the car, the helicopter would look like it is standing still ( because both objects have the same velocity). If the observer is on the side of the road, both objects would be travelling at the same velocity. Also recall that, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes but speed is the rate at which object covers distance and it is not direction wise. Hence velocity is the best option.
Answer:
0.12 K
Explanation:
height, h = 51 m
let the mass of water is m.
Specific heat of water, c = 4190 J/kg K
According to the transformation of energy
Potential energy of water = thermal energy of water
m x g x h = m x c x ΔT
Where, ΔT is the rise in temperature
g x h = c x ΔT
9.8 x 51 = 4190 x ΔT
ΔT = 0.12 K
Thus, the rise in temperature is 0.12 K.