Answer:
V_infinty=98.772 m/s
Explanation:
complete question is:
The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?
<u>solution:</u>
<u>given:</u>
<em>p_o=1.07*10^5 N/m^2</em>
<em>ρ_infinity=1.23 kg/m^2</em>
<em>p_infinity=1.01*10^5 N/m^2</em>
p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2
V_infinty^2=9756.097
V_infinty=98.772 m/s
The acceleration is given as:
a = g sin(30°) where g is the gravitational acceleration
For g = 10 m/s^2, we get
a = 10 sin(30°) = 10 * 1/2 = 5 m/s^2
1. In a single atom, no more than 2 electrons can occupy a single orbital? A. True
2. The maximum number of electrons allowed in a p sublevel of the 3rd principal level is?
B.6
3. A neutral atom has a ground state electronic configuration of 1s^2 2s^2. Which of the following statements concerning this atom is/are correct?
B. All of the above.
The radius of the circular path is 1.5 m.
The circumference is then

The ball moves 3π m every 2.2 s, so the speed is
A.What is the effect of air resistance on the cannonball? It's a question related to science and the experiment, which may pop into your head.