answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
2 years ago
9

A 94-ft3/s water jet is moving in the positive x-direction at 18 ft/s. The stream hits a stationary splitter, such that half of

the flow is diverted upward at 45° and the other half is directed downward, and both streams have a final average speed of 18 ft/s. Disregarding gravitational effects, determine the x- and z-components of the force required to hold the splitter in place against the water force. Take the density of water as 62.4 lbm/ft3.
Physics
1 answer:
vitfil [10]2 years ago
3 0

Answer:

FR<em>x  </em>= 960.37 lbf   (←)

FR<em>z </em>= 0 lbf

Explanation:

Given:

Q = 94 ft³/s

vx = 18 ft/s

ρ = 62.4 lbm/ft³

∅ = 45°

<em>Assumptions: </em>

1. The flow is steady and incompressible.

2 . The water jet is exposed to the atmosphere, and thus the  pressure of the water jet before and after the split is the  atmospheric pressure which is disregarded since it acts on all  surfaces.

3. The gravitational effects are disregarded.

4. The  flow is nearly uniform at all cross sections, and thus the effect  of the momentum-flux correction factor is negligible, β ≅ 1.

<em>Properties:</em> We take the density of water to be ρ = 62.4 lbm/ft³

Analysis: The mass flow rate of water jet is

M = ρ*Q = (62.4 lbm/ft³ )(94 ft³/s) = 5865.6 lbm/s

We take the splitting section of water jet, including the splitter as the control volume, and designate the entrance by 1 and  the outlet of either arm by 2 (both arms have the same velocity and mass flow rate <em>M</em>). We also designate the horizontal  coordinate by x with the direction of flow as being the positive direction and the vertical coordinate by z.

The momentum equation for steady flow is

∑ F = ∑ (β*M*v) <em>out</em> - ∑ (β*M*v) <em>in</em>

We let the x- and y- components of the  anchoring force of the splitter be FR<em>x</em> and FR<em>z,  </em>and assume them to be in the positive directions. Noting that

v₂ = v₁ = v  and  M₂ = (1/2) M, the momentum equations along the x and z axes become

FR<em>x </em>= 2*(1/2) M*v₂*Cos ∅ - M*v₁ = M*v*(Cos ∅ - 1)

FR<em>z </em>= (1/2) M*(v₂*Sin ∅) + (1/2) M*(-v₂*Sin ∅) = 0

Substituting the given values,

FR<em>x </em>= (5865.6 lbm/s)*(18 ft/s)*(Cos (45°) - 1)(1 lbf / 32.2 lbm*ft/s²)

⇒  FR<em>x  </em>= - 960.37 lbf

FR<em>z </em>= 0 lbf

The negative value for FR<em>x</em> indicates the assumed direction is wrong, and should be reversed. Therefore, a force of 960.37 lbf  must be applied to the splitter in the opposite direction to flow to hold it in place. No holding force is necessary in the  vertical direction. This can also be concluded from the symmetry.

In reality, the gravitational effects will cause the upper stream to slow down and the lower stream to speed  up after the split. But for short distances, these effects are negligible.  

You might be interested in
"The predictions of Einstein’s Theory of General Relativity were tested on a double pulsar system in January of 2004. His equati
Rasek [7]

Answer:

99.95%

Explanation:

A double pulsar system named PSR J0737-3039A/B  in Puppis constellation was discovered in the year 2003. Pulsars are second most densest object in the universe after black holes and they emit radio waves at regular intervals. This pair presented a great and natural setup to test the Theory of General Relativity presented by Einstein in 1915. In this theory Einstein had presented a set of equations on how the space-time fabric will be curved because of the very dense objects such as Neutron stars. It also predicted how the gravitational waves are created because of stars orbiting each other.

A team of astrophysicists led by Michael Kramer, conducted a study on how these gravitational waves will impact the time in which the radio waves emitted by pulsars will reach Earth. The result of the study proved the theory of General Relativity to be accurate up to 99.95%.

8 0
2 years ago
Think about it: suppose a meteorite collided head-on with mars and becomes buried under mars's surface. what would be the elasti
Ket [755]

Answer:

Perfectly inelastic collision

Explanation:

There are two types of collision.

1. Elastic collision : When the momentum of the system and the kinetic energy of the system is conserved, the collision is said to be elastic. For example, the collision of two atoms or molecules are considered to be elastic collision.

2. Inelastic collision: When the momentum  the system is conserved but the kinetic energy is not conserved, the collision is said to be inelastic. For example, collision of a ball with the mud.

For a perfectly elastic collision, the two bodies stick together after collision.

Here, the meteorite collide with the Mars and buried inside it, the collision is said to be perfectly inelastic. here the kinetic energy of a body lost completely during the collision.

4 0
2 years ago
A 2 000-kg sailboat experiences an eastward force of 3 000 N by the ocean tide and a wind force against its sails with a magnitu
Vesnalui [34]

Answer:

The magnitude of the resultant acceleration is 2.2 m/s^2

Explanation:

Mass (m) of the sailboat =  2000 kg

Force acting on the sailboat due to ocean  tide is F_1 = 3000N

Eastwards means takes place along the positive x direction

ThenF_{1x} = 3000N and F_{1y}= 0

Wind Force acting on the Sailboat isF_2  = 6000N directed towards the northwest that means at an angle  45 degree above the negative x axis

Then  

F_{2x} = -(6000N) cos 45 degree = -4242.6 N

F_{2y}  = (6000N) cos 45 degree = 4242.6 N

Hence  , the net force acting on the sailboat in x direction is  

F_x = F_{1x}+ F_{2x}

=  - 3000 N + 4242.6 N

=  - 3000 N +4242.6 N

= 1242.6N

Net Force acting on the sailboat in y direction is  

F_y = F_{1y}+ F_{2y}

= 0+ 4242.6N

= 4242.6N

The magnitude of the resultant force =

Using pythagorean theorm of 1243 N and 4243 N

\sqrt{(1242.6)^2 + (4242.6)^2

\sqrt{(1544054.76) + (17999654.8)}

\sqrt{(19543709.5)^2}

4420.8 N

F = ma

a = \frac{F}{m}

a =\frac{4420.8}{ 2000}

=2.2 m/s^2

4 0
2 years ago
Water runs into a fountain, filling all the pipes, at a steady rate of 0.750 m3&gt;s. (a) How fast will it shoot out of a hole 4
kati45 [8]

Answer:

velocity  = 472 m/s

velocity = 52.4 m/s

Explanation:

given data

steady rate = 0.750 m³/s

diameter = 4.50 cm

solution

we use here flow rate formula that is

flow rate = Area × velocity .............1

0.750 = \frac{\pi }{4} × (4.50×10^{-2})²  × velocity

solve it we get

velocity  = 472 m/s

and

when it 3 time diameter

put valuer in equation 1

0.750 = \frac{\pi }{4} × 3 ×  (4.50×10^{-2})²  × velocity

velocity = 52.4 m/s

5 0
2 years ago
Two circular rods, one steel and the other copper, are joined end to end. Each rod is 0.750 m long and 1.50 cm in diameter. The
Eddi Din [679]

Answer:

(a) Steel rod: 1.1 * 10^{-4}

    Copper rod: 1.88 * 10^{-4}

(b) Steel rod: 8.3 * 10^{-5} m

Copper rod: 1.41 * 10^{-4} m

Explanation:

Length of each rod = 0.75 m

Diameter of each rod = 1.50 cm = 0.015 m

Tensile force exerted = 4000 N

(a) Strain is given as the ratio of change in length to the original length of a body. Mathematically, it is given as

Strain = \frac{1}{Y} * \frac{F}{A}

where Y = Young modulus

F = Fore applied

A = Cross sectional area

For the steel rod:

Y =  200 000 000 000 N/m^{2}

F = 4000N

A = \pi r^{2}      (r = d/2 = 0.015/2 = 0.0075 m)

=> A = \pi * (0.0075)^{2}

=> A = 0.000177 m^{2}

∴ Strain = \frac{4000}{200000000000 * 0.000177} \\\\Strain = \frac{4000}{35400000}\\ \\Strain = 0.000113 = 1.13 * 10^{-4}

For the copper rod:

Y =  120 000 000 000 N/m²

F = 4000N

A = \pi r^{2}      (r = d/2 = 0.015/2 = 0.0075 m)

=> A = \pi * (0.0075)^{2}

=> A = 0.000177 m^{2}

Strain = \frac{4000}{120 000 000 000 * 0.000177} \\\\Strain = \frac{4000}{21240000}\\ \\Strain =  = 1.88 * 10^{-4}

(b) We can find the elongation by multiplying the Strain by the original length of the rods:

Elongation = Strain * Length

For the steel rod:

Elongation = 1.1 * 10^{-4} * 0.75 = 8.3 * 10^{-5} m

For the copper rod:

Elongation = 1.88 * 10^{-4} * 0.75 = 1.41 * 10^{-4} m

6 0
2 years ago
Other questions:
  • Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Which does not explain why the
    8·2 answers
  • An object moving at a constant velocity travels 274 m in 23 s. what is its velocity?
    9·2 answers
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • A motion sensor is used to create the graph of a student’s horizontal velocity as a function of time as the student moves toward
    8·1 answer
  • You are standing at the midpoint between two speakers, a distance D away from each. The speakers are playing the exact same soun
    7·1 answer
  • A 35-kg girl is standing near and to the left of a 43-kg boy on the frictionless surface of a frozen pond. The boy throws a 0.75
    12·1 answer
  • Two trucks with equal mass are attracted to each other with a gravitational force of 5.3 x 10 -4 N. The trucks are separated by
    12·1 answer
  • A 12.0 kg mass, fastened to the end of an aluminum wire with an unstretched length of 0.50 m, is whirled in a vertical circle wi
    7·2 answers
  • A kickball is kicked straight up at a speed of 22.4m/s. how high does it go
    8·1 answer
  • Compare and contrast the strength of the forces between two objects with a mass of 1 kg each, a charge of 10
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!