Answer:
6.78 X 10³ N/C
Explanation:
Electric field near a charged infinite plate
= surface charge density / 2ε₀
Field will be perpendicular to the surface of the plate for both the charge density and direction of field will be same so they will add up.
Field due to charge density of +95.0 nC/m2
E₁ = 95 x 10⁻⁹ / 2 ε₀
Field due to charge density of -25.0 nC/m2
E₂ = 25 x 10⁻⁹ / 2ε₀
Total field
E = E₁ + E₂
= 95 x 10⁻⁹ / 2 ε₀ + 25 x 10⁻⁹ / 2ε₀
= 6.78 X 10³ N/C
Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
As we know that speed of package is same as that of helicopter in horizontal direction
So after time "t" the velocity in x direction will remain constant while in Y direction it will go free fall
So we have



Part b)
Distance from helicopter is same as the distance of free fall
so we will have

Part c)
If helicopter is rising upwards with uniform speed
then final speed of the package after time t is given as


Part d)
distance from helicopter

Answer:
28√3 m
Explanation:
A = vertex where receiver is placed
S = focus
Bp = r = radius of the outside edge
Bc = 2r = diameter
The full explanation is shown in the picture attached herewith. Thank you and i hope it helps.
Answer:
dont you have to times it
Explanation:
Answer:
order d> a = e> c> b = f
Explanation:
Pascal's law states that a change in pressure is transmitted by a liquid, all points are transmitted regardless of the form
P₁ = P₂
Using the definition of pressure
F₁ / A₁ = F₂ / A₂
F₂ = A₂ /A₁ F₁
Now we can examine the results
a) F1 = 4.0 N A1 = 0.9 m2 A2 = 1.8 m2
F₂ = 1.8 / 0.9 4
F₂a = 8 N
b) F1 = 2.0 N A1 = 0.9 m2 A2 = 0.45 m2
F₂b = 0.45 / 0.9 2
F₂b = 1 N
c) F1 2.0 N A1 = 1.8 m2 A2 = 3.6 m2
F₂c = 3.6 / 1.8 2
F₂c = 4 N
d) F1 = 4.0N A1 = 0.45 m2 A2 = 1.8 m2
F₂d = 1.8 / 0.45 4.0
F₂d = 16 m2
e) F1 = 4.0 N A1 = 0.45 m2 A2 = 0.9 m2
F₂e = 0.9 / 0.45 4
F₂e = 8 N
f) F1 = 2.0N A1 = 1.8 m2 A2 = 0.9 m2
F₂f = 0.9 / 1.8 2.0
F₂f = 1 N
Let's classify the structure from highest to lowest
F₂d> F₂a = F₂e> F₂c> F₂b = F₂f
I mean the combinations are
d> a = e> c> b = f