According to Einstein's special theory of relativity, the speed of the light in a vacuum is the same no matter the speed with which an observer travels. So the answer should be A) 0,1c (1/10 the speed of light)
Answer:
(a) v = 3..6 m/s
(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.
Explanation:
from the question we have the following:
mass of the car (Mc) = 24,000 kg
initial velocity of the car (u) = 4 m/s
mass of water (Mw) = 3000 kg
final velocity of the car (v) = ?
(a) we can calculate the final momentum of the car by applying the conservation of momentum where
initial momentum = final momentum
Mc x U = (Mc + Mw) x V
24000 x 4 = (24000 + 3000) x v
96,000 = 27000v
v =3.6 m/s
(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.
Answer:
The magnitude and direction of electric field midway between these two charges is
along AB.
Explanation:
Given that,
First charge 
second charge 
Distance = 20 cm
We need to calculate the electric field
For first charge,
Using formula of electric field

Put the valueinto the formula


Direction of electric field along AB
We need to calculate the electric field
For second charge,
Using formula of electric field

Put the valueinto the formula


Direction of electric field along AO
We need to calculate the net electric field at midpoint



Direction of net electric field along AB
Hence, The magnitude and direction of electric field midway between these two charges is
along AB.
Answer:
230
Explanation:
= Rotational speed = 3600 rad/s
I = Moment of inertia = 6 kgm²
m = Mass of flywheel = 1500 kg
v = Velocity = 15 m/s
The kinetic energy of flywheel is given by

Energy used in one acceleration

Number of accelerations would be given by

So the number of complete accelerations is 230