Answer:
Speed, mass and acceleration
Explanation:
A scalar quantity is a quantity that has only magnitude but no direction while a vector quantity has both magnitude and direction.
According to the question, the row that has two scalars and one vector is speed, mass and acceleration.
The two scalars in this row are speed and mass while the vector quantity there is the acceleration.
Acceleration has direction since it possess direction. A body accelerating will do so in a particular direction. Speed and mass doesn't possess any direction. Mass only specify the magnitude of the body but no clue as to which direction is the body moving towards.
Speed also only specify the
total distance covered with respect to time but not the direction of the direction.
Answer:
D. increases by a factor of 4.
Explanation:
General equation of SHM
Lets taken the general equation of the displacement given as
x = A sinω t
A=Amplitude ,t=time ,ω=natural frequency
We know that speed V
V= A ω cosωt
The mechanical energy of spring mass system

K=Spring constant
Now when Amplitude A become 2 times then the mechanical energy will become 4 times.
Therefore the answer is D.
Answer:
2.39 revolutions
Explanation:
As she jumps off the platform horizontally at a speed of 10m/s, the gravity is the only thing that affects her motion vertically. Let g = 10m/s2, the time it takes for her to fall 10m to water is




Knowing the time it takes to fall to the pool, we calculate the angular distance that she would make at a constant acceleration of 15 rad/s2:


As each revolution is 2π, the total number of revolution that she could make is: 15 / 2π = 2.39 rev
Answer:
(a) v = 15m/a
(b) No they won't feast because the rock can only rise to a height of 11.5m which is less than 15m.
Explanation:
Please see the attachment below for film solution.
Answer:

Explanation:
Given:
Initial velocity of the vehicle, 
distance between the car and the tree, 
time taken to respond to the situation, 
acceleration of the car after braking, 
Using equation of motion:
..............(1)
where:
final velocity of the car when it hits the tree
initial velocity of the car when the tree falls
acceleration after the brakes are applied
distance between the tree and the car after the brakes are applied.

Now for this situation the eq. (1) becomes:
(negative sign is for the deceleration after the brake is applied to the car.)