Explanation:
Below is an attachment containing the solution.
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
Centripetal acceleration = (speed)² / (radius) .
Force = (mass) · (acceleration)
Centripetal force = (mass) · (speed)² / (radius) .
= (11 kg) · (3.5 m/s)² / (0.6 m)
= (11 kg) · (12.25 m²/s²) / (0.6 m)
= (11 · 12.25) / 0.6 kg-m/s²
= 224.58 newtons. (about 50.5 pounds)
That's the tension in Miguel's arm or leg or whatever part of his body
Jesse is swinging him by. It's the centripetal force that's needed in
order to swing 11 kg in a circle with a radius of 0.6 meter, at 3.5
meters/second. If the force is less than that, then the mass has to
either swing slower or else move out to follow a bigger circle.
Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²
Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e 
where
is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation: