answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
2 years ago
13

The thrust of a certain boat’s engine generates a power of 10kW as the boat moves at constant speed 10ms through the water of a

lake. The magnitude of the drag force that is exerted on the boat’s hull as it is moving through the water is directly proportional to the boat's speed and is given by the equation F=kv. The increase in power needed for the boat to move through the lake at a constant speed of 12ms is : a. 0W b. 1440 W c. 4400 W 10,000 W e. 4,400 W
Physics
1 answer:
Lunna [17]2 years ago
6 0

Answer:

The change in power is 4400 W.

Explanation:

Given that,

Power = 10 kW

Speed = 10 m/s

Increases speed = 12 m/s

Given equation is,

F=kv

We know that,

The power is,

P=Fv

Put the value of F into the formula

P=(kv)v

P=kv^2

P\propto v^2

We need to calculate the new power

Using formula for power

\dfrac{P}{P'}=\dfrac{v^2}{v'^2}

Put the value into the formula

\dfrac{10}{P'}=(\dfrac{10}{12})^2

P'=(\dfrac{12}{10})^2\times10

P'=14.4\ kW

We need to calculate the change in power

Using formula of change in power

\Delta P=P'-P

Put the value into the formula

\Delta P=14.4-10

\Delta P=4.4\ kW

\Delta P=4.4\times1000

\Delta P=4400\ W

Hence, The change in power is 4400 W.

You might be interested in
A ball is dropped from the top of a building.After 2 seconds, it’s velocity is measured to be 19.6 m/s. Calculate the accelerati
zlopas [31]

Answer:

acceleration, a = 9.8 m/s²

Explanation:

'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.

u = 0 m/s

After 2 seconds, velocity of the ball is 19.6 m/s.

t = 2s, v = 19.6 m/s

Using

v = u + at

19.6 = 0 + 2a

a = 9.8 m/s²

6 0
2 years ago
Read 2 more answers
A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
Vlada [557]
Newtons second law.. <span>The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.</span>
4 0
2 years ago
Read 2 more answers
A glass beaker of unknown mass contains of water. The system absorbs of heat and the temperature rises as a result. What is the
kakasveta [241]

From the information provided in the question, the mass of the beaker is 144.4 g.

From the information provided in the complete question;

volume of water = 74 mL

Mass of water = 74 g

specific heat of glass = 0.18 cal/g ∙ °C

specific heat of water = 1.0 cal/g ∙ C°

Mass of glass =  x g

Total heat gained by the system = 2000.0cal

Temperature rise = 20.0°C

Heat gained by system = Heat gained  by glass + Heat gained by water

Heat gained by glass = x ×  0.18 × 20

Heat gained by water = 74  ×  1.0 × 20

Hence;

2000 =  (x ×  0.18 × 20) + ( 74  ×  1.0 × 20)

2000 - 1480 =  (x ×  0.18 × 20)

x = 520/3.6

x = 144.4 g

Missing parts;

A glass beaker of unknown mass contains 74.0 ml of water. The system absorbs 2000.0cal of heat and the temperature rises 20.0°C as a result. What is the mass of the beaker? The specific heat of glass is 0.18

cal/g °C, and that of water is 1.0 cal/g °C.​

Learn more: brainly.com/question/1446583

3 0
1 year ago
Julius competes in the hammer throw event. The hammer has a mass of 7.26 kg and is 1.215 m long. What is the centripetal force o
nevsk [136]
In the circular motion of the hammer, the centripetal force is given by
F=m \frac{v^2}{r}
where m is the mass of the hammer, v its tangential speed and r is the distance from the center of the motion, i.e. the length of the hammer.
Using the data of the problem, we find:
F=m \frac{v^2}{r}=(7.26 kg) \frac{(31.95 m/s)^2}{1.215 m}=6100 N
4 0
2 years ago
Read 2 more answers
The free-electron density in a copper wire is 8.5×1028 electrons/m3. The electric field in the wire is 0.0520 N/C and the temper
meriva

Answer:

(a) 1.87 x 10⁻⁴ m/s

(b) 0.013V

Explanation:

(a) Drift speed, v_{d} , is the average velocity that a charged particle can have due to an electric field. For a given current, I, the drift velocity is given by;

v_{d} = \frac{I}{qnA}             ----------------(i)

Where;

q = amount of charge

n = free charge density

A = cross-sectional area of the wire

But current density, J, is the electric current per unit cross-section area. This  is also equal to the ratio of the electric field, E, to the resistivity, p, of the material of the wire. i.e

J = \frac{I}{A} = \frac{E}{p}

Equation (i) can then be written as follows;

v_{d} = \frac{J}{qn} = \frac{E}{qnp}

v_{d} = \frac{E}{qnp}      ---------------------(ii)

From the question;

E = 0.0520N/C

p = 1.72 x 10⁻⁸ Ωm

n = 8.5 x 10²⁸ electrons/m³

c = charge on electron = 1.9 x 10⁻¹⁹C

Substitute these values into equation (ii) as follows;

v_{d} = \frac{0.0520}{1.9*10^{-19} * 8.5*10^{28} * 1.72*10^{-8}}

v_{d} = 1.87 x 10⁻⁴ m/s

(b) The potential difference, V, is given by the product of the electric field and the distance, d, between the two points in the wire. i.e

V = E x d        [where d = 25.0cm = 0.25m]

V = 0.0520 x 0.25

V = 0.013V

4 0
2 years ago
Other questions:
  • Make a diagram showing the forces acting on a coasting bike rider traveling at 25km/h on a flat roadway.
    14·2 answers
  • After observing a moth that is camouflaged against dark-colored bark, a scientist asks a question. The scientist discovers that
    11·2 answers
  • A 10 kg brick and a 1 kg book are dropped in a vacuum. The force of gravity on the 10 kg brick is what?
    7·2 answers
  • what velocity must a 1340kg car have in order to havw the same momentum as a 2680 kg truck traveling at a velocity of 15m/s to t
    12·1 answer
  • A 72 kg sled Is pulled forward from rest by a snowmobile and accelerates at 2 m/s squared forward for five seconds. The force of
    7·1 answer
  • The steel plate is 0.3 m thick and has a density of 7850 kg&gt;m3 . determine the location of its center of mass. also find the
    5·1 answer
  • You are comparing two diffraction gratings using two different lasers: a green laser and a red laser. You do these two experimen
    8·1 answer
  • Carla sees an equation that models a nuclear change.
    11·1 answer
  • You work for the police. An accident has happened. A farmer was taking his dairy cows for milking across a road. The crossing po
    8·1 answer
  • Four students were loading boxes of food collected during a food drive. The force that each student exerted while lifting and th
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!