To solve the problem it is necessary to apply the concepts related to Conservation of linear Moment.
The expression that defines the linear momentum is expressed as
P=mv
Where,
m=mass
v= velocity
According to our data we have to
v=10m/s
d=0.05m

Volume 
t = 3hours=10800s

From the given data we can calculate the volume of rain for 5 seconds

Where,
It is the period of time we want to calculate total rainfall, that is


Through water density we can now calculate the mass that fell during the 5 seconds:



Now applying the prevailing equation given we have to



Therefore the momentum of the rain that falls in five seconds is 
Answer:
B
Explanation:
Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.
In 1 and 2 work done is positive
vf=vi+at
No need for rearranging because it is already set up for Vf (final velocity)
a= -9.8m/s² (because it is falling)
vi= 0
t= 2.7
0 + -9.8(2.7) = vf
vf = -26.5 (-26.46)
Answer:bowling ball has greater kinetic energy
Explanation:
Kinetic energy of bowling ball:
mass=m=5kg
Velocity=v=6m/s
Kinetic energy =ke
Ke=0.5 x m x v x v
Ke=0.5 x 5 x 6 x 6
Ke=90J
Kinetic energy of ship:
mass=m=120000kg
velocity=v=0.02m/s
Ke=0.5 x m x v x v
Ke=0.5 x 120000 x 0.02 x 0.02
Ke=24J
Answer:
Explanation:
This is a displacement vector since it is defined in terms of distance (meters, to be exact). The way you find the y-component is
which says that you multiply the magnitude of the vector (its length) by the sin of the direction (the angle):
and get
12.1 m