I think that the girl has greater tangential acceleration because she is closer to the center and the acceleration is greater there.
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
Answer:
(a) 0.05 Am^2
(b) 1.85 x 10^-3 Nm
Explanation:
width, w = 10 cm = 0.1 m
length, l = 20 cm = 0.2 m
Current, i = 2.5 A
Magnetic field, B = 0.037 T
(A) Magnetic moment, M = i x A
Where, A be the area of loop
M = 2.5 x 0.1 x 0.2 = 0.05 Am^2
(B) Torque, τ = M x B x Sin 90
τ = 0.05 x 0.037 x 1
τ = 1.85 x 10^-3 Nm
Sometimes arithmetic problems can be solved much more easily using the dimensional analysis approach. You focus on the units of the given information. Then, you manipulate them applying the laws of algebra where like units cancel, in order to end up with the unit of the unknown.
Given:
-50 nc/step
31 steps
Unknown: charge
Thus,
Charge = -50 nc/step * 31 steps =<em> -1550 nc</em>
Answer:
|v| = 8.7 cm/s
Explanation:
given:
mass m = 4 kg
spring constant k = 1 N/cm = 100 N/m
at time t = 0:
amplitude A = 0.02m
unknown: velocity v at position y = 0.01 m

1. Finding Ф from the initial conditions:

2. Finding time t at position y = 1 cm:

3. Find velocity v at time t from equation 2:
