Answer:
The density of the sun is 4434kg/m³
This was found by dividing the mass (1.989 ×10³⁰kg) by the volume (4.486×10²⁶ m³) which was calculated using V = 4/3×pi ×r³
Explanation:
See attachment below.
Answer:
d) 12 V
Explanation:
Due to the symmetry of the problem, the potential (relative to infinity) at the midpoint of the square, is the same for all charges, provided they be of the same magnitude and sign, and be located at one of the corners of the square.
We can apply the superposition principle (as the potential is linear with the charge) and calculating the total potential due to the 4 charges, just adding the potential due to any of them:
V = V(Q₁) + V(Q₂) +V(Q₃) + V(Q₄) = 4* 3.0 V = 12. 0 V
Answer:
(A) Q = 2.26×10⁶J
(B) ΔT = 9°C
(C)
Explanation:
We have been given the mass of the hiker, the volume of water from which we can calculate the mass knowing that the density if water is 1000kg/m³.
Evaporation is a phase change and occurs at a constant temperature. We would use the latent heat of vaporization to calculate the amount of heat evaporated.
We would then equate this to the heat change it brings about in the hiker's body and then calculate the temperature drop.
See the attachment below for full solution.
The partial pressure of the O2 is 36.3 kiloPascal when the air pressure in the mask is 110 kiloPascal based on the isotherm relation. This problem can be solved by using the isotherm relation equation which stated as Vx/Vtot = px/ptot, where V represents volume, p represents the pressure, x represents the partial gas, and tot represents the total gas<span>. Calculation: 33/100 = px/110 --> px = 36.3</span>