Let T1 and T2 be tension in ropes1 and 2 respectively.
<span>since system is stationary (equilibrium), considering both ropes + beam as a system </span>
<span>for horizontal equilibrium (no movement in that direction, so resultant force must be zero horizontally) </span>
<span>T1sin(20) = T2sin(30) </span>
<span>=> T1 = T2sin(30) / sin(20) </span>
<span>for vertical equilibrium, (no movement in this direction, so resultant force must be zero vertically) </span>
<span>T1cos(20) + T2cos(30) = mg </span>
<span>m = 900kg, substituting for T1 </span>
<span>T2sin(30)*cos(20)/sin(20) + T2cos(30) = 900g </span>
<span>2.328*T2 = 900*9.8 </span>
<span>T2 = 3788.65N </span>
<span>so T1 from (1) </span>
<span>T1 = 5535.21N</span>
Answer:
Angular displacement of the turbine is 234.62 radian
Explanation:
initial angular speed of the turbine is



similarly final angular speed is given as



angular acceleration of the turbine is given as

now we have to find the angular displacement is given as



Answer:
16,18,22
Or
1,3,7
Explanation:
The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation
Aluminium, or heavier version copper.
B. velocity at position x, velocity at position x=0, position x, and the original position
In the equation
=
+2 a x (x - x₀)
= velocity at position "x"
= velocity at position "x = 0 "
x = final position
= initial position of the object at the start of the motion