Answer:
r= 2.17 m
Explanation:
Conceptual Analysis:
The electric field at a distance r from a charge line of infinite length and constant charge per unit length is calculated as follows:
E= 2k*(λ/r) Formula (1)
Where:
E: electric field .( N/C)
k: Coulomb electric constant. (N*m²/C²)
λ: linear charge density. (C/m)
r : distance from the charge line to the surface where E calculates (m)
Known data
E= 2.9 N/C
λ = 3.5*10⁻¹⁰ C/m
k= 8.99 *10⁹ N*m²/C²
Problem development
We replace data in the formula (1):
E= 2*k*(λ/r)
2.9= 2*8.99 *10⁹*(3.5*10⁻¹⁰/r)
r =( 2*8.99 *10⁹*3.5*10⁻¹⁰) / (2.9)
r= 2.17 m
Answer:
The horizontal distance d does the ball travel before landing is 1.72 m.
Explanation:
Given that,
Height of ramp 
Height of bottom of ramp 
Diameter = 0.17 m
Suppose we need to calculate the horizontal distance d does the ball travel before landing?
We need to calculate the time
Using equation of motion




We need to calculate the velocity of the ball
Using formula of kinetic energy



Using conservation of energy



Put the value into the formula


We need to calculate the horizontal distance d does the ball travel before landing
Using formula of distance

Where. d = distance
t = time
v = velocity
Put the value into the formula


Hence, The horizontal distance d does the ball travel before landing is 1.72 m.
Answer:
230
Explanation:
= Rotational speed = 3600 rad/s
I = Moment of inertia = 6 kgm²
m = Mass of flywheel = 1500 kg
v = Velocity = 15 m/s
The kinetic energy of flywheel is given by

Energy used in one acceleration

Number of accelerations would be given by

So the number of complete accelerations is 230