answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
2 years ago
15

Two flat conductors are placed with their inner faces separated by 6.0 mm. If the surface charge density on one of the inner fac

es is 40 pC/m2, what is the magnitude of the electric potential differences between the two conductors?
Physics
1 answer:
dangina [55]2 years ago
7 0

Explanation:

Relation between electric field and charge density is as follows.

           E = \frac{\sigma}{2 \epsilon}

where,    \sigma = charge density

              \epsilon = permittivity of free space = 8.85 \times 10^{-12}

So,  E_{\text{outside}} = 0

      E_{inside} = \frac{+\sigma}{2 \epsilon} - \frac{-\sigma}{2 \epsilon}

or,     E_{inside} = \frac{\sigma}{\epsilon}

Now, formula to calculate the potential difference of two conductors is as follows.

         V_{1} - V_{2} = \frac{\sigma \times d}{\epsilon}

It is given that,

           d = 6.0 mm = 6 \times 10^{-3} m

        \sigma = 40 \times 10^{-12} C/m^{2}

Hence, we will calculate the magnitude of the electric potential differences between the two conductors as follows.

        V_{1} - V_{2} = \frac{\sigma \times d}{\epsilon}

                     = \frac{40 \times 10^{-12} \times 6 \times 10^{-3}}{8.85 \times 10^{-12}}      

                     = 0.0271 volts

thus, we can conclude that value of the magnitude of the electric potential differences between the two conductors is 0.0271 volts.

You might be interested in
ANSWER BELOW QUESTIONS:
Bogdan [553]

Answer:

why should we do , do by your own , no sense

Explanation:

3 0
2 years ago
Read 2 more answers
An electric heater draws a steady current = 20.0 A on a 120-V line. (a) Calculate how much power does it require.
babymother [125]

Answer:

The heater power required is 2400 W. The power in the heater can be calculated as the product of the voltage line and the steady current:

P=V.I

P=120 V * 20 A = 2400 VA = 2400 W

Explanation:

8 0
2 years ago
A sports car accelerates from 0 to 30 mph in 1.5 s. How long would it take to accelerate from 0 to 60 mph, assuming the power of
Crank

Answer:

6 s

Explanation:

given,

Sports car accelerate from 0 to 30 mph in 1.5 s

time taken to accelerate  0 to 60 mph = ?

The power of the engine is independent of velocity and neglecting friction

power =

P = constant  

the kinetic energy for 60 mph larger than this of 30 mph

 = \dfrac{\dfrac{1}{2}mv_1^2}{\dfrac{1}{2}mv_2^2}

 = \dfrac{v_1^2}{v_2^2}

 = \dfrac{60^2}{30^2}

 = 4

gain in kinetic energy  = P x t

time = 4 x 1.5

       = 6 s

8 0
2 years ago
A helium ion of mass 4m and charge 2e is accelerated from rest through a potential difference V in vacuum. Its final speed will
Pavel [41]

Answer:

Final Velocity = √(eV/m)

Explanation:

The Workdone, W, in accelerating a charge, 2e, through a potential difference, V is given as a product of the charge and the potential difference

W = (2e) × V = 2eV

And this work is equal to change in kinetic energy

W = Δ(kinetic energy) = ΔK.E

But since the charge starts from rest, initial velocity = 0 and initial kinetic energy = 0

ΔK.E = ½ × (mass) × (final velocity)²

(Velocity)² = (2×ΔK.E)/(mass)

Velocity = √[(2×ΔK.E)/(mass)]

ΔK.E = W = 2eV

mass = 4m

Final Velocity = √[(2×W)/(4m)]

Final Velocity = √[(2×2eV)/4m]

Final Velocity = √(4eV/4m)

Final Velocity = √(eV/m)

Hope this Helps!!!

8 0
1 year ago
A 60 kg student in a rowboat on a still lake decides to dive off the back of the boat. The studen'ts horizontal aceleration is 2
TiliK225 [7]
As per the third law of Newton, the force exerted by the boat over the student is equal in magnitude to the force that the student exerted on the boat.

So, calculate the force on the student using the second law of Newton, Force = mass * acceleration.

Force on the student = 60 kg * 2.0 m/s^2 = 120 N.

=> horizontal force exerted by the student on the boat = 120 N

Answer: option d. 120 N. toward the back of the boat.

Of course it is toward the back because that is where the student jumped from..
4 0
2 years ago
Other questions:
  • A steady circular __________ light means drivers must stop at a marked stop line.
    7·2 answers
  • Which is the BEST example of refraction?
    13·2 answers
  • A car traveling at a velocity v can stop in a minimum distance d. What would be the car's minimum stopping distance if it were t
    10·1 answer
  • Suppose you want to make a scale model of a hydrogen atom. You choose, for the nucleus, a small ball bearing with a radius of 1.
    7·1 answer
  • If the lattice constant of silicon is 5.43 Å, calculate?
    7·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • A hot air balloon must be designed to support a basket, cords, and one person for a total payload weight of 1300 N plus the addi
    9·1 answer
  • What is not a similarity between mars and earth today?
    15·1 answer
  • At what location in the refrigerator is the most thermal energy removed?
    12·1 answer
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!