Answer:
the thickness required of a masonry wall L = 375mm
Explanation:
The detailed steps and appropriate use of fourier's law of heat conduction is as shown in the attached file.
Answer:
Explanation:
Given that,
Spring constant = 16N/m
Extension of spring
x = 8cm = 0.08m
Mass
m = 5g =5/1000 = 0.005 kg
The ball will leave with a speed that makes its kinetic energy equal to the potential energy of the compressed spring.
So, Using conservation of energy
Energy in spring is converted to kinectic energy
So, Ux = K.E
Ux = ½ kx²
Then,
Ux = ½ × 16 × 0.08m²
Ux = 0.64 J
Since, K.E = Ux
K.E = 0.64 J
To solve this exercise it is necessary to apply the kinematic equations of angular motion.
By definition we know that the displacement when there is constant angular velocity is

From our given data we know that,



Moreover we know that

Therefore for time t=8.1s we have,



That number in revolution is:


Here, we see that there are 15 complete revolutions
And 0.108 revolutions i not complete, so the tunable rotation is

Therefore the angle of the speck at a time 8.1s is 
Answer:
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
c) True. Information is missing to perform the calculation
Explanation:
Let's consider solving this exercise before seeing the final statements.
We use Newton's second law Rotational
τ = I α
T r = I α
T gR = I α
Alf = T R / I (1)
T = α I / R
Now let's use Newton's second law in the mass that descends
W- T = m a
a = (m g -T) / m
The two accelerations need related
a = R α
α = a / R
a = (m g - α I / R) / m
R α = g - α I /m R
α (R + I / mR) = g
α = g / R (1 + I / mR²)
We can see that the angular acceleration depends on the radius and the moments of inertia of the steering wheels, the mass is constant
Let's review the claims
a) True. There is dependence on the radius and moment of inertia, no data is given to calculate the moment of inertia
b) False. Missing data for calculation
c) True. Information is missing to perform the calculation
d) False. There is a dependency if the radius and moment of inertia increases angular acceleration decreases
Answer:

Explanation:
The fusion reaction in this problem is

The total energy released in the fusion reaction is given by

where
is the speed of light
is the mass defect, which is the mass difference between the mass of the reactants and the mass of the products
For this fusion reaction we have:
is the mass of one nucleus of hydrogen
is the mass of one nucleus of helium
So the mass defect is:

The conversion factor between atomic mass units and kilograms is

So the mass defect is

And so, the energy released is:
