Below are the choices that can be found elsewhere:
a. 268 kJ
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have:
<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>
<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>
<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>
<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>
<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>
<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>
Answer:
cold air is more dense than warm water so it sinks to the bottom of the pool
Answer:
The gas was Hexane
Explanation:
taking the diference between the mass of the flask and the final mass qe can calculate the mass of liquid injected (assuming none escaped the flask):

with the volume of the flask we can get the density of the gas at the indicated pressure and temperature:

From the ideal gases law we have that the density can be calculated as:

Where R is the ideal gases constant = , and M the molecular weight of the fluid. Solving for M:


Note that the temperature is computed in Kelvin T= 18+273=291K
The gas with the closer molar mass is Hexane
Answer:
C. Both reach the bottom at the same time.
Explanation:
For a rolling object down an inclined plane , the acceleration is given below
a = g sinθ / (1 + k² / r² )
θ is angle of inclination , k is radius of gyration , r is radius of the cylinder
For cylindrical object
k² / r² = 1/2
acceleration = g sinθ /( 1 + 1/2 )
= 2 g sinθ / 3
Since it does not depend upon either mass or radius , acceleration of both the cylinder will be equal . Hence they will reach the bottom simultaneously.
Answer:
Obviously Lengthen...
or 
Explanation:
As we can observe from the equation, time period of a simple pendulum depends upon the length directly. When the gravitational acceleration increases the time period of the pendulum decreases and vice versa. So, by increasing the length, the time period can be adjusted...