Answer:
Option b
Explanation:
Metamorphism is the process where the variation of the geological texture resulting from the different arrangement of the minerals or the variation of minerals in protoliths, i.e., pre- existing rocks take place such that there occurs no change in state of the protolith, i.e., it does not melt into magma.
The change takes place as a result of the presence of chemically active fluids, heat and pressure.
There is a reaction between the chemically active fluid and the rock through which it passes and promotes the movement of the dissolved ions of silicate and promotes the growth of the mineral grains.
Answer:
a. 
b. 
Explanation:
The inertia can be find using
a.





now to find the torsion constant can use knowing the period of the balance
b.
T=0.5 s

Solve to K'


This question is in complete.The question is
A coin with a diameter 3.00 cm rolls up a 30.0° inclined plane. The coin starts out with an initial angular speed of 60.0 rad/s and rolls in a straight line without slipping. If the moment of inertia of the coin is(1/2) MR² , how far will the coin roll up the inclined plane (length along the ramp)? Hint: Conservation of mechanical energy.
Answer:
distance=0.124 m
Explanation:

Answer:
295.42 N
Explanation:
From Newton's law of universal gravitation.
F = Gmm'/r².................. Equation 1
Where F = Gravitational force, G = Universal constant, m = mass of the human, m' = mass of mass, r = radius of mass.
Given: m = 80 kg, m' = 6.4×10²³ kg, r = 3.4×10⁶ m.
Constant: G = 6.67×10⁻¹¹ Nm²/Kg²
Substitute into equation 1
F = 6.67×10⁻¹¹(80)(6.4×10²³ )/( 3.4×10⁶)²
F = 3415.04×10¹²/(11.56×10¹²)
F = 3415.04/11.56
F = 295.42 N
Hence the gravitational force = 295.42 N
Answer:
a) f = 615.2 Hz b) f = 307.6 Hz
Explanation:
The speed in a wave on a string is
v = √ T / μ
also the speed a wave must meet the relationship
v = λ f
Let's use these expressions in our problem, for the initial conditions
v = √ T₀ /μ
√ (T₀/ μ) = λ₀ f₀
now it indicates that the tension is doubled
T = 2T₀
√ (T /μ) = λ f
√( 2To /μ) = λ f
√2 √ T₀ /μ = λ f
we substitute
√2 (λ₀ f₀) = λ f
if we suppose that in both cases the string is in the same fundamental harmonic, this means that the wavelength only depends on the length of the string, which does not change
λ₀ = λ
f = f₀ √2
f = 435 √ 2
f = 615.2 Hz
b) The tension is cut in half
T = T₀ / 2
√ (T₀ / 2muy) = f = λ f
√ (T₀ / μ) 1 /√2 = λ f
fo / √2 = f
f = 435 / √2
f = 307.6 Hz
Traslate
La velocidad en una onda en una cuerda es
v = √ T/μ
ademas la velocidad una onda debe cumplir la relación
v= λ f
Usemos estas expresión en nuestro problema, para las condiciones iniciales
v= √ To/μ
√ ( T₀/μ) = λ₀ f₀
ahora nos indica que la tensión se duplica
T = 2T₀
√ ( T/μ) = λf
√ ) 2T₀/μ = λ f
√ 2 √ T₀/μ = λ f
substituimos
√2 ( λ₀ f₀) = λ f
si suponemos que en los dos caso la cuerda este en el mismo armónico fundamental, esto es que la longitud de onda unicamente depende de la longitud de la cuerda, la cual no cambia
λ₀ = λ
f = f₀ √2
f = 435 √2
f = 615,2 Hz
b) La tension se reduce a la mitad
T = T₀/2
RA ( T₀/2μ) = λ f
Ra(T₀/μ) 1/ra 2 = λ f
fo /√ 2 = f
f = 435/√2
f = 307,6 Hz