the answer could be (very basic) since options arent given
To solve this problem it is necessary to use the given proportions of power and energy, as well as the energy conversion factor in Jules to Calories.
The power is defined as the amount of energy lost per second and whose unit is Watt. Therefore the energy loss rate given in seconds was


The rate of energy loss per day would then be,


That is to say that Energy in Jules per lost day is 5356800J
By definition we know that 
In this way the energy in Cal is,


The number of kilocalories (food calories) must be 1279.694 KCal
Answer:
b ≈ 64 Kg/s
Explanation:
Given
Fd = −bv
m = 2.5 kg
y = 6.0 cm = 0.06 m
g = 9.81 m/s²
The object in the pan comes to rest in the minimum time without overshoot. this means that damping is critical (b² = 4*k*m).
m is given and we find k from the equilibrium extension of 6.0 cm (0.06 m):
∑Fy = 0 (↑)
k*y - W = 0 ⇒ k*y - m*g = 0 ⇒ k = m*g / y
⇒ k = (2.5 kg)*(9.81 m/s²) / (0.06 m)
⇒ k = 408.75 N/m
Hence, if
b² = 4*k*m ⇒ b = √(4*k*m) = 2*√(k*m)
⇒ b = 2*√(k*m) = 2*√(408.75 N/m*2.5 kg)
⇒ b = 63.9335 Kg/s ≈ 64 Kg/s
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
Answer:
True statements:
Power is the rate at which work is done.
Power is the rate at which energy is transformed.
The SI unit of power is watt.
A person is limited in the total work he or she can do by the rate at which energy can be transformed.
Explanation:
The above statements are true.
1. Power is defined as the rate at which work is done.
2. Power is the rate at which energy is transformed. Whenever energy changes its form, or moves from one place to another, the rate at which it makes those changes is described as power.
3. The SI Unit of power is watts. If 1 joule of energy is converted by an object in 1 second then its power is called one watt.
So, the statement<em> 'the SI unit of power is the horsepower' is</em> false.
4. A person is limited in the total work he or she can do by the rate at which energy can be transformed i.e, his power. He is not only limited by the total energy required.
So, the statement <em>'A person is limited in the total work he or she can do only by the total energy required'</em> is not completely true.