answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
2 years ago
8

Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d

ensity of a hippo’s body is approxi-mately 1030 kg/m3, so it sinks to the bottom of the freshwater lakes and rivers it frequents—and then it simply walks on the bottom. A 1500 kg hippo is completely submerged, standing on the bottom of a lake. What is the approximate value of the upward normal force on the hippo?
Physics
1 answer:
kenny6666 [7]2 years ago
3 0

Answer:

428.59 N

Explanation:

Buoyant force, B=Vg\rho where V is volume, g is gravitational constant and \rho is density

B+F_{upward}=mg where F_{upward} is upward force

Vg\rho_{w}+F_{upward}=mg

F_{upward}=mg- Vg\rho_{w}

F_{upward}=g(mg- V\rho_{w})=g(m-m\frac {\rho_{w}{\rho_{hippo}} where \rho_{hippo} is the density of hippo

F_{upward}=mg(1-\frac {\rho_{w}}{\rho_{hippo}})

Using g as 9.81

F_{upward}=1500*9.81*(1-1000/1030)= 428.5922 N

Therefore, the upward force=428.59 N

You might be interested in
You are playing a game called "Will It Float?" In this game, you are given a large, square can of tuna. If you know the density
Delicious77 [7]
The only information you would need to decide if the can will float is the density of the can, which requires knowing the mass and volume. If the density of the can is less than one, the can will float. if it is greater than one, it will not float, as water's density is one.
6 0
2 years ago
Read 2 more answers
In Part 6.2.2, you will determine the wavelength of the laser by shining the laser beam on a "diffraction grating", a set of reg
harkovskaia [24]

Answer:

λ = 2042 nm

Explanation:

given data

screen distance d = 11 m

spot s = 4.5 cm = 4.5 ×10^{-2} m

separation L = 0.5 mm = 0.5 ×10^{-3} m

to find out

what is λ

solution

we will find first angle between first max and central bright

that is tan θ = s/d

tan θ = 4.5 ×10^{-2}  / 11

θ = 0.234

and we know diffraction grating for max

L sinθ  = mλ

here we know m = 1  so put all value and find λ

L sinθ  = mλ

0.5 ×10^{-3}  sin(0.234)  = 1 λ

λ = 2042.02 ×10^{-9}  m

λ = 2042 nm

3 0
2 years ago
What is the length of the x-component of the vector shown below?
jeka94

Answer:

D

Explanation:

7 0
2 years ago
A helicopter pulls upward by means of a rope on a 250 kg crate to lift it UNIFORMLY. What is the net force on the crate?
Cloud [144]

Answer:

The net force = 0

Explanation:

The given information includes;

The mass of the crate = 250 kg

The way the helicopter lifts the crate = Uniformly (constant rate (speed), no acceleration)

In order to pull the crate upwards, the helicopter has to provide a force equivalent to the weight of the crate keeping the helicopter on the ground.

The weight of the crate = The mass of the crate × The acceleration due gravity acting on the crate

The weight of the crate, F_w↓ = 250 kg × 9.81 m/s² = 2,452.5 N

The force the helicopter should provide to just lift the crate, F_{(helicopter)}↑ = The weight of the crate = 2,452.5 N

The net force, F_{(net)} = F_{(helicopter)}↑ - F_w↓ = 2,452.5 N - 2,452.5 N = 0

The net force = 0.

3 0
2 years ago
Use Wien’s Law to calculate the peak wavelength of Betelgeuse, based on the temperature found in Question #8. Note: 1 nanometer
kodGreya [7K]

The peak wavelength of Betelgeuse is 828 nm

Explanation:

The relationship between surface temperature and peak wavelength of a star is given by Wien's displacement law:

\lambda=\frac{b}{T}

where

\lambda is the peak wavelength

T is the surface temperature

b=2.898\cdot 10^{-3} m\cdot K is Wien's constant

For Betelgeuse, the surface temperature is approximately

T = 3500 K

Therefore, its peak wavelength is:

\lambda=\frac{2.898\cdot 10^{-3}}{3500}=8.28\cdot 10^{-7} m = 828 nm

Learn more about wavelength:

brainly.com/question/5354733

brainly.com/question/9077368

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • An electron starts from rest 3.00 cm from the center of a uniformly charged sphere of radius 2.00 cm. if the sphere carries a to
    11·1 answer
  • For lunch you and your friends decide to stop at the nearest deli and have a sandwich made fresh for you with 0.300 kg of Italia
    7·1 answer
  • A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
    9·1 answer
  • A sound technician is testing the sound acoustics in a theatre for an upcoming music concert. As he moves towards the speakers,
    5·2 answers
  • What mass needs to be attached to a spring with a force constant of 7N/m in order to make a simple harmonic oscillator oscillate
    9·1 answer
  • Hydrogen peroxide is sold commercially as an aqueous solution in brown bottles to protect it from light. Calculate the longest w
    6·2 answers
  • A record player turntable initially rotating at 3313 rev/min is braked to a stop at a constant rotational acceleration. The turn
    12·1 answer
  • Consider a simple ideal Rankine cycle with fixed turbine inlet conditions. What is the effect of lowering the condenser pressure
    8·1 answer
  • In the introduction of this activity, we mentioned the temperature of your home on hot and cold days. Your body is kept warm in
    5·2 answers
  • Car A rounds a curve of 150‐m radius at a constant speed of 54 km/h. At the instant represented, car B is moving at 81 km/h but
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!