answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
2 years ago
8

Hippos spend much of their lives in water, but amazingly, they don’t swim. manatees, They have, like little very body fat. The d

ensity of a hippo’s body is approxi-mately 1030 kg/m3, so it sinks to the bottom of the freshwater lakes and rivers it frequents—and then it simply walks on the bottom. A 1500 kg hippo is completely submerged, standing on the bottom of a lake. What is the approximate value of the upward normal force on the hippo?
Physics
1 answer:
kenny6666 [7]2 years ago
3 0

Answer:

428.59 N

Explanation:

Buoyant force, B=Vg\rho where V is volume, g is gravitational constant and \rho is density

B+F_{upward}=mg where F_{upward} is upward force

Vg\rho_{w}+F_{upward}=mg

F_{upward}=mg- Vg\rho_{w}

F_{upward}=g(mg- V\rho_{w})=g(m-m\frac {\rho_{w}{\rho_{hippo}} where \rho_{hippo} is the density of hippo

F_{upward}=mg(1-\frac {\rho_{w}}{\rho_{hippo}})

Using g as 9.81

F_{upward}=1500*9.81*(1-1000/1030)= 428.5922 N

Therefore, the upward force=428.59 N

You might be interested in
What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
murzikaleks [220]
Details are missing in the question. Complete text of the problem:

"The gravitational force exerted on a baseball is 2.28 N down. A pitcher throws the ball horizontally with velocity 16.5 m/s by uniformly accelerating it along a straight horizontal line for a time interval of 181 ms. The ball starts from rest.

(a) Through what distance does it move before its release? (m)
(b) What are the magnitude and direction of the force the pitcher exerts on the ball? (Enter your magnitude to at least one decimal place.)"


Solution

(a) The pitcher accelerates the baseball from rest to a final velocity of v_f = 16.5 m/s, so \Delta v=16.5 m/s, in a time interval of \Delta t = 181 ms=0.181 s. The acceleration of the ball in the horizontal direction (x-axis) is therefore

a_x =  \frac{\Delta v}{\Delta t}= \frac{16.5 m/s}{0.181 s}=91.2 m/s^2

And the distance covered by the ball during this time interval, before it is released, is:

S= \frac{1}{2} a_x (\Delta t)^2 = \frac{1}{2} (91.2 m/s^2)(0.181 s)^2=1.49 m

(b) For this part we need to consider also the weight of the ball, which is W=mg=2.28 N

From this, we find its mass: m= \frac{W}{g}= \frac{2.28 N}{9.81 m/s^2}=0.23 Kg

Now we can calculate the magnitude of the force the pitcher exerts on the ball. On the x-axis, we have

F_x = m a_x = (0.23 kg)(91.2 m/s^2)=20.98 N

We also know that the ball is moving straight horizontally. This means that the vertical component of the force exerted by the pitcher must counterbalance the weight of the ball (acting downward), in order to have a net force of zero along the y-axis, and so:

F_y=W=mg=2.28 N (upward)

So, the magnitude of the force is

F= \sqrt{F_x^2+F_y^2}=  \sqrt{(20.98N)^2+(2.28N)^2}=21.2 N

To find the direction, we should find the angle of F with respect to the horizontal. This is given by

\tan \alpha =  \frac{F_y}{F_x}= \frac{2.28 N}{20.98 N}=0.11

From which we find \alpha=6.2^{\circ}

7 0
2 years ago
Read 2 more answers
A plane wall with constant properties is initially at a uniform temperature To. Suddenly, the surface at x = L is exposed to a c
Rzqust [24]

Answer:

The distribution is as depicted in the attached figure.

Explanation:

From the given data

  • The plane wall is initially with constant properties is initially at a uniform temperature, To.
  • Suddenly the surface x=L is exposed to convection process such that T∞>To.
  • The other surface x=0 is maintained at To
  • Uniform volumetric heating q' such that the steady state temperature exceeds T∞.

Assumptions which are valid are

  1. There is only conduction in 1-D.
  2. The system bears constant properties.
  3. The volumetric heat generation is uniform

From the given data, the condition are as follows

<u>Initial Condition</u>

At t≤0

T(x,0)=T_o

This indicates that initially the temperature distribution was independent of x and is indicated as a straight line.

<u>Boundary Conditions</u>

<u>At x=0</u>

<u />T(0,t)=T_o<u />

This indicates that the temperature on the x=0 plane will be equal to To which will rise further due to the volumetric heat generation.

<u>At x=L</u>

<u />-k\frac{\partial T}{\partial x}]_{x=L}=h[T(L,t)-T_{\infty}]<u />

This indicates that at the time t, the rate of conduction and the rate of convection will be equal at x=L.

The temperature distribution along with the schematics are given in the attached figure.

Further the heat flux is inferred from the temperature distribution using the Fourier law and is also as in the attached figure.

It is important to note that as T(x,∞)>T∞ and T∞>To thus the heat on both the boundaries will flow away from the wall.

3 0
2 years ago
The study of alternating electric current requires the solutions of equations of the form i equals Upper I Subscript max Baselin
KiRa [710]

Answer:

Explanation:

i = Imax sin2πft

given i = 180 , Imax = 200 , f = 50  , t = ?

Put the give values in the equation above

180 = 200 sin 2πft

sin 2πft = .9

sin2π x 50t = .9

sin 360 x 50 t = sin ( 360n + 64 )

360 x 50 t = 360n + 64

360 x 50 t =  64 ,  ( putting n = 0 for least value of t )

18000 t = 64

t = 3.55 ms  .

8 0
2 years ago
if a toaster transfers 100 joules of energy every ten seconds, what is the power rating of the toaster include the units in your
Mila [183]

Answer:

that is the solution to the question

8 0
2 years ago
Read 2 more answers
A hockey stick strikes a hockey puck of mass 0.17 kg. If the force exterted on the hockey puck is 35.0 N and there is a force of
GREYUIT [131]

Answer:

a=190\ m/s^2

Explanation:

Mass of a hockey puck, m = 0.17 kg

Force exerted by the hockey puck, F' = 35 N

The force of friction, f = 2.7 N

We need to find the acceleration of the hockey puck.

Net force, F=F'-f

F=35-2.7

F=32.3 N

Now, using second law of motion,

F = ma

a is the acceleration of the hockey puck

a=\dfrac{F}{m}\\\\a=\dfrac{32.3}{0.17}\\\\a=190\ m/s^2

So, the acceleration of the hockey puck is 190\ m/s^2.

5 0
2 years ago
Other questions:
  • The intensity of sunlight hitting the surface of the earth on a cloudy day is about 0.50 kw/m2 assuming your pupil can close dow
    10·1 answer
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    9·2 answers
  • You place your hands over a steaming bowl of soup to warm them. Which type of heat transfer are you experiencing?
    10·2 answers
  • A uniform electric field with a magnitude of 125 000 N/C passes through a rectangle with sides of 2.50 m and 5.00 m. The angle b
    10·1 answer
  • A uniformly accelerated car passes three equally spaced traffic signs. The signs are separated by a distance d = 25 m. The car p
    8·1 answer
  • When a hammer thrower releases her ball, she is aiming to maximize the distance from the starting ring. Assume she releases the
    14·1 answer
  • A giant wall clock with diameter d rests vertically on the floor. The minute hand sticks out from the face of the clock, and its
    10·1 answer
  • The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
    12·1 answer
  • 1. Determina el momento que produce una fuerza de 7 N tangente a una rueda de un metro de diámetro, sabiendo que el punto de apl
    5·1 answer
  • 5. A 1-kg car and a 2-kg car are both released from the top of the same hill and roll down a frictionless track. At the bottom o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!