answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
2 years ago
8

If the surface temperature of that person's skin is 30∘C (that's a little lower than healthy internal body temperature becaus

e your skin is usually a little colder than your insides), what is the total power that person will radiate? For now, assume the person is a perfect blackbody (so ϵ=1).
Physics
1 answer:
anastassius [24]2 years ago
5 0

Answer:

E=477.92\ W.m^{-2}

Explanation:

Given that:

Absolute temperature of the body, T=273+30=303\ K

  • emissivity of the body, \epsilon=1

<u>Using Stefan Boltzmann Law of thermal radiation:</u>

E=\epsilon. \sigma.T^4

where:

\sigma =5.67\times 10^{-8}\ W.m^{-2}.K^{-4}   (Stefan Boltzmann constant)

Now putting the respective values:

E=1\times 5.67\times 10^{-8}\times 303^4

E=477.92\ W.m^{-2}

You might be interested in
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
2 years ago
Jim stands beside a wide river and wonders how wide it is. he spots a large rock on the bank directly across from him. he then w
LuckyWell [14K]

To solve this problem, we must imagine that Jim’s initial position, the position of the rock, and Jim’s final position all connects to form a triangle. Now we can imagine that the triangle is a right triangle with the 90° angle on the initial position.

The angle of 30° is directly opposite to the length of his total stride while the width of the river is the side adjacent to the angle. Therefore can use the tan function to solve for the width of the river:

tan θ = opposite side / adjacent side

tan 30 = total stride distance / width of river

where total stride distance = 65 * 0.8 = 52 m

width of river = 52 m / tan 30

<span>width of river = 90.07 m</span>

7 0
2 years ago
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
2 years ago
The peregrine falcon is the world's fastest known bird and has been clocked diving downward toward its prey at constant vertical
Sergio [31]
100m / 97.2m/s = 1.0288 seconds
7 0
1 year ago
Read 2 more answers
Suppose you sketch a model of an atom using the ones here as a guide. How would you build a model that is ionized? How would you
kap26 [50]

Answer:

Explanation:

An atom is constructed of three different particles known as electrons, protons and neutrons.

These particles have different mass and charges and are responsible for various characters than an atom posses.

An electron has a negative charge, a proton has positive charge and charge of neutron is neutral. Equal number of electrons and protons are present in an atom that make it electrically neutral but different conditions can occur if we remove these particles from an atom.

1 : Model of an ionized atom - an ionized atom is one which has some net charge on this. It can be either a positive charge or a negative charge.

If we need to sketch the model of an ionized atom then one should either keep the number of electrons less or proton.

2: Model of radioactive atom : A radioactive atom is one an unstable atom and has access of energy in its center. It can be caused by adding either neutrons or protons.

3 0
1 year ago
Other questions:
  • Saturn has an orbital period of 29.46 years. In two or more complete sentences, explain how to calculate the average distance fr
    13·1 answer
  • A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
    13·2 answers
  • When a car goes around a circular curve on a horizontal road at constant speed, what force causes it to follow the circular path
    7·1 answer
  • If you are driving 72 km/h along a straight road and you look to the side for 4.0 s, how far do you travel during this inattenti
    9·1 answer
  • You've always wondered about the acceleration of the elevators in the 101 story-tall Empire State Building. One day, while visit
    7·1 answer
  • Use the drop down menu to answer the question
    7·2 answers
  • A frog leaps up from the ground and lands on a step 0.1 m above the ground 2 s later. We want to find the
    6·1 answer
  • Listed in the Item Bank are key terms and expressions, each of which is associated with one of the columns. Some terms may displ
    15·2 answers
  • Light rays from stars bend toward smaller angles as they enter Earth's atmosphere. a. Explain why this happens using Snell's law
    8·1 answer
  • The late news reports the story of a shooting in the city. Investigators think that they have recovered the weapon and they run
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!