Answer:
-13.18°C
Explanation:
To develop the problem it is necessary to consider the concepts related to the thermal conduction rate.
Its definition is given by the function

Where,
Q = The amount of heat transferred
t = time
k = Thermal conductivity constant
A = Cross-sectional area
The difference in temperature between one side of the material and the other
d= thickness of the material
The problem says that there is a loss of heat twice that of the initial state, that is

Replacing,




Solvinf for
,

Therefore the temprature at the outside windows furface when the heat lost per second doubles is -13.18°C
Answer:
(1) En to n-1 = 0.55 ev
(2) En-1 to n-2 = 0.389 ev
(3) ninitial =4
(4) L =483.676 ×10^-11 nm
(5) λlongest= 1773.33 nm
Explanation:
Detailed explanation of answer is given in the attached files.
The surrounding air will become warm when water vapor condenses. The vapors when become water will give away latent heat they have, we know that latent heat is required for the object to change states, so, the latent heat the water vapor had when it became water vapor from water will be given out when it again becomes water.
Answer: -2 km
Explanation:
If we imagine Jin's movement to be the hypothenuse of a right triangle, then the southern component of Jin's movement corresponds to the side of the triangle opposite to the angle of 30 degrees. Therefore, the magnitude of this southern component is given by
However, the angle of 30 degrees is south of east: this means that the direction of this southern component is south, and since we generally take north as positive direction, we must add a negative sign, so the correct answer is
-2 km